Is it possible to use cashew gum as an alternative biopolymer to partially replace the sodium alginate in lipase immobilization?

- 168216
Pôster
Favoritar este trabajo
¿Cómo citar este artículo?
Resúmenes

Ionic gelation has been standing out as a promising method for enzyme immobilization, mainly due to the mild process conditions. In view of this, the search for new biopolymers to be used as wall materials has also stood out in the last few years. In this context, this work aims to study the effect of sodium alginate replacement by cashew gum in lipase immobilization by jet cutting technique. Sodium alginate, cashew gum, and calcium chloride (200 mM) were used for Eversa® Transform 2.0 immobilization. Concerning lipase distribution in the bead, X-ray photoelectron Spectroscopy (XPS) demonstrated a uniform Nitrogen distribution across the bead with values from 4.68 to 5.93% for the bead with 2% of alginate (B1) and 6.10 to 6.98% for the bead with 1% of alginate + 1% of cashew gum in internal and external parts of the beads. Recovery activity found for both beads was 41.95±2.01 (B1) and 48.28±0.82 (B2). A maximum result of 1863 ± 308.86 (B1) and 1793 ± 335.56 U/g of protein (B2) at 30.4°C (temperature) and 10.94 (pH) were found in the study of the effect of temperature and pH on lipase activity. Scanning Electronic Microscopy exhibited that both beads had cracks, and Fourier Transform Infrared Spectroscopy (FTIR) that the immobilization process did not cause lipase changes. When the beads were used in a transesterification process (soybean oil + ethanol), free fatty ethyl esters’ yields of 37.32 ± 0.33 (B1) and 43.00 ± 2.42 (B2) were achieved. The results show the possibility of using cashew gum as a promising wall material to partially replace the sodium alginate in the lipase immobilization process.

¡Comparte tus ideas o preguntas con los autores!

¿Sabías que el mayor estímulo en el desarrollo científico y cultural es la curiosidad? ¡Deje sus preguntas o sugerencias al autor!

Inicia sesión para interactuar

¿Tiene alguna pregunta o sugerencia? ¡Comparte tus comentarios con los autores!

Instituciones
  • 1 Universidade Estadual de Campinas / Faculdade de Engenharia de Alimentos
  • 2 Universidade Federal da Paraíba / Departamento de Engenharia de Alimentos
Eje Temático
  • Bioquímica y Biotecnología de Alimentos
Palabras Clave
enzyme immobilization; jet cutting; Anacardium occidentale