Oceanic Niño Index forecasting based on dynamic ensemble selection

Vol 55, 2023 - 160908
Trabalho completo (oral)
Favoritar este trabalho
Como citar esse trabalho?
Resumo

El Niño Southern Oscillation (ENSO) events have a significant impact on the global climate, leading to various consequences such as droughts. These events are loosely intertwined with multiple aspects of health, agriculture, and economics. Therefore, accurate forecasting of ENSO events is crucial in mitigating their impacts. In recent literature, multiple predictor systems (MPS) methods, including Dynamic Ensemble Selection (DES), have gained prominence due to their ability to enhance overall forecasting accuracy. However, despite being a promising alternative, there is a lack of studies focusing on ENSO-related time series forecasting using DES methods. Hence, this research aims to analyze the performance of a DES method in one-step ahead forecasting of the Oceanic Niño Index (ONI) time series. Based on the presented results, the DES method demonstrated superior performance compared to the alternative methods implemented in this study across the established performance measures.

Compartilhe suas ideias ou dúvidas com os autores!

Sabia que o maior estímulo no desenvolvimento científico e cultural é a curiosidade? Deixe seus questionamentos ou sugestões para o autor!

Faça login para interagir

Tem uma dúvida ou sugestão? Compartilhe seu feedback com os autores!

Instituições
  • 1 Universidade Federal de Pernambuco
  • 2 Centro Universitário Dr. Leão Sampaio
  • 3 Universidade Federal do Cariri
Eixo Temático
  • 11. IC – Inteligência Computacional
Palavras-chave
Dynamic selection; Multiple predictor systems; ENSO