Investigation of the blood plasma depletome from schizophrenia patients and their association to quetiapine efficacy

Licia C. S. Costa*, Sheila Garcia, Paulo A. Baldasso, Daniel Martins-de-Souza

Abstract

Schizophrenia is a chronic and multifactorial disorder. The main way of controlling its symptoms is through antipsychotics. The human blood plasma is a potential source for biomarkers that predict medication efficacy. The removal of high-abundant proteins from plasma in order to reduce its complexity in terms of proteome may carry away potential biomarkers. Therefore, the analysis of the high-abundant proteins fraction (the depletome) can address this issue. We investigated the depletome of schizophrenia patients before the antipsychotic treatment using shotgun mass spectrometry approach. We identified 220 proteins in the depletome. These proteins show the importance of studying high abundant proteins in the quest for biomarkers.

Key words: Schizophrenia, biomarkers, proteomics

Introduction

The main way of controlling schizophrenia symptoms is through antipsychotics. But there are no biomarkers that predict a successful response to medication1. This answer may be found in the blood plasma proteome2. Given the large dynamic range of blood plasma proteins, high abundant proteins (the depletome) are selectively depleted prior to proteome analysis. But during this process, potential biomarkers of low abundance may be removed inadvertently3. Thus, the analysis of the depletome3 is certainly a relevant question in the quest for biomarkers. Our study aims to investigate the depletome obtained from good and poor antipsychotic responders before the initiation of antipsychotic treatment using shotgun mass spectrometry2.

Results and Discussion

The analysis of good and poor responder groups in T0 (before the treatment) using shotgun mass spectrometry resulted in identification of 220 proteins and quantitation of 175 proteins. Over 50 were identified by 1 unique peptide if it had been counted at least 4 times in a given run. There are several biological process in which depletome proteins may be involved (Chart 1).

Table 1. Differentially expressed proteins classification

<table>
<thead>
<tr>
<th>Accession</th>
<th>Description</th>
<th>Molecular Function</th>
<th>Biological Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>P19652</td>
<td>Alpha-1-acid glycoprotein</td>
<td>Defense immunity protein activity</td>
<td>Immune response</td>
</tr>
<tr>
<td>P00739</td>
<td>Haptoglobin-related protein</td>
<td>Molecular function unknown</td>
<td>Immune response</td>
</tr>
<tr>
<td>P06727</td>
<td>Apolipoprotein A-IV</td>
<td>Transporter activity</td>
<td>Transport</td>
</tr>
<tr>
<td>P04433</td>
<td>Ig kappa variable 3-11</td>
<td>Uncharacterized</td>
<td>Uncharacterized</td>
</tr>
<tr>
<td>P01624</td>
<td>Ig kappa variable 3-15</td>
<td>Uncharacterized</td>
<td>Uncharacterized</td>
</tr>
</tbody>
</table>

Conclusions

The blood plasma depletome revealed over 50 proteins, which participate in several biological processes. Five of the differentially expressed proteins play roles in protein signaling and drug vesicle-mediated transport. Thus, these proteins may be targets to compose a biomarkers panel in the future.

Acknowledgement

This research is funded by FAPESP, CNPq and CAPES.