Oral administration of EPA-rich oil delayed the initial stages of wound healing due to anti-inflammatory effect of Interleukin-10.

Abstract
The aim of this study was investigate the effects of EPA-rich oil on wound healing and on macrophage cell functions, isolated from mice.

Key words: Wound healing, Eicosapentaenoic fatty acids, Immune cells

Introduction
Poor wound healing affects over six million people around the world and lead to suffer and high costs of care*. Considering the immune system as one actor in wound healing we investigated the influence of omega-3 fatty acid (EPA) in this process.

Results and Discussion
Statistical analyses: Values were express as mean±SD and (**) p< 0,01; (**) p< 0,05 indicates significant differences in relation to control.

Figure 1. EPA-rich oil impaired the inflammatory and proliferative phases of wound healing process. (a) Wound area percentages of control mice (○) or mice supplemented with 2g/Kg of EPA-rich oil (●). (b) Representative photos. Used 5 to 12 animals per group. Statistical analyses by two-way analysis of variance (ANOVA) and Bonferroni posttest

Figure 3. EPA treated mice presented a biphasic effect on cytokines production. Concentrations of cytokines in scar tissue harvested 3, 7 and 10 days after wounding. Used 5 to 12 animals per group. Statistical analyses by t test and Mann Whitney posttest.

Figure 4. IL-10 delayed de initial stages of wound healing on mice supplemented with EPA-rich oil (a) Wound area percentages 3 days after lesion. (b) Representative photos. Used 4 to 6 animals per group. Statistical analyses by one-way analysis of variance (ANOVA) and Bonferroni posttest.

Figure 5. EPA induced anti-inflammatory effect on cytokines production by peritoneal macrophages. Concentrations of cytokines in supernatant of macrophages. Used 4 to 6 animals per group. Statistical analyses by two-way analysis of variance (ANOVA) and Bonferroni posttests.

Conclusions
In conclusion, in mice, the oral administration of EPA-rich oil impaired the inflammatory phases of wound healing due to anti-inflammatory effect of EPA.

Acknowledgement
FAPESP, CNPq, CAPES and FAEPEX/PRP/UNICAMP

XXV Congresso de Iniciação Científica da UNICAMP