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Abstract. The Amazon forest, which is one of the main tropical forests in the globe, has been undergoing to 

anthropogenic pressure, what could lead to forest loss and degradation. As a consequence, public policies 

focusing on preservation, conservation and monitoring are mandatory, especially in protected areas. The use of 

satellite imagery allows a better understanding of how human activities are causing land use and land cover 

change (LULCC). The aim of this study is to identify land cover change from 2001 to 2004, inside and outside 

the National Forest of Tapajós (FLONA Tapajós), using the Linear Spectral Mixture Model (LSMM) and a 

Green Vegetation (GV) index. Results showed that the biggest changes between 2001 and 2004 occurred outside 

the FLONA. The GV Index was more suited to detect small losses of vegetation than the GV fraction alone. 
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1. Introduction 

In the Amazon Forest the processes involving land use and land cover change (LULCC) 

are restricted primarily to the last 30 years, with most deforestation concentrated along the 

southern and eastern flanks of the region, in an area termed as “arc of deforestation” or “arc of 

fire”, which is an area where timber extraction, deforestation, fires and agriculture expansion 

occurs (Becker, 2009). These processes are associated with many factors, both anthropogenic 

(e. g. urbanization, agricultural expansion, etc.) and natural (such as droughts, extreme 

weather), and lead to change and complete conversion of the forest onto other land cover 

types (IBAMA, 2004). Due to the fact that changes in the Amazon could affect biodiversity, 

carbon cycle, hydrological balance, climate control and other services, it is important to 

maintain an assiduous monitoring in Amazonian vegetated areas. 

Usually these changes are difficult to measure; therefore remote sensing has played an 

important role in mapping land cover and quantifying change in the Amazon for more than 25 

years (Potter et al., 1993; Running et al., 1999). The techniques used in remote sensing image 

processing are of great importance to identify, detect and extract information. Furthermore, 

these techniques would be helpful for surveillance promoted by environmental agencies, 

especially in sizeable areas as the Amazon Forest. Many LULCC detection techniques were 

developed using remote sensing images (Kennedy et al., 2009), however, most of these 

researches focus on conversion processes, such as changes from forest to agriculture, in 

relation to modification processes, such as degradation and growth (Lu et al., 2014). 

The purpose of this study is the evaluation of vegetation changes from 2001 to 2004 inside 

and outside the Tapajós National Forest. For this, we used the Linear Spectral Mixture Model 

(LSMM), based on the methodology developed by Lu et al. (2014). 
 

 

2. Methodology 
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2.1. Study Area 

This study was conducted in the northern area of the Tapajós National Forest (FLONA), 

Figure 1, south of Santarém municipality, Pará state, Brazil, next to BR 163 highway, which 

connects Cuiabá (Mato Grosso state) to Santarém. 

 

 
Figure 1. FLONA Tapajós location.  

 

The area is mainly covered by primary forest, but some areas within the FLONA, located 

in the south of the studied area, are ceded to selective logging. For example, in September 

2001 underwent through a selective logging. The logging was managed by the Brazilian 

Institute for the Environment and Renewable Resources (IBAMA) and participated of a 

reduced-impact-logging project over a 5-year period beginning in 1999 (Figueira et al., 2008). 

This logging episode may cause slight changes inside the FLONA.  The area chosen for this 

study also contains an area outside the FLONA boarders, to the east of the BR 163 highway, 

characterized by the presence of secondary forests, cattle raising and agriculture. These 

activities might cause greater variations in LULCC. 

The average annual precipitation was approximately 1900 mm, with a distinct wet season 

between January and June, and a dry season between July and December. The maximum daily 

temperature was 24º to 32ºC and the minimum was 20º to 25ºC (Figueira et al., 2008). 

 

2.2. Input data 
In order to detect changes in vegetation, we used two images from Landsat-5 TM sensor 

(with a spatial resolution of 30 meters), acquired in August 07, 2001, previous a logging 

episode, and July 30, 2004, after the logging. Minimal cloud cover and great visual range 

were the criteria used to choose the images. 

The images were retrieved from the U.S. Geological Survey - Earth Explorer catalog 

(http://earthexplorer.usgs.gov/), already converted to surface reflectance values. They were 

also downloaded already with geometric and radiometric corrections. In addition to the six 

Landsat-5 TM bands surface reflectance, a “cfmask” was used to identify areas with cloud, 

cloud shadow, snow and water. This mask was applied to detect cloud covered and shadowed 

areas, excluding them from the final result due to the lack they would cause in vegetation 

cover data. 
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The path and row of the study area were 227 and 062, respectively. Further, the images 

were clipped in order to contain only the area of interest. The FLONA boundaries were 

acquired at ICMBIO online database (http://www.icmbio.gov.br/portal/geoprocessamentos). 
To extract the FLONA polygon (contour), the software quantum GIS was used, but for the 

other steps in image processing ENVI 5.1 was employed. The main methodological 

procedures used in this study are summarized in Figure 2. 

 

 
Figure 2. Main diagram of the employed methodology. 

 

2.3. Linear Spectral Mixture Model (LSMM) 

The LSMM considers that the reflectance in each pixel is a linear combination spectra of 

all the components within the pixel (Shimabukuro e Smith, 1991; Adams et al., 1995), 

weighted by the fraction of each component, as in equation 1. 

 
𝑅𝑖𝑗

( |𝑓𝑗) + 𝑒𝑖

𝑅𝑖 =∑

𝑛

𝑗=1

 (1) 

Where Ri is the pixel reflectance in band i; Rij is the reflectance of an endmember j in band 

i;𝑓𝑗is the fraction occupied by endmember j within the pixel and 𝑒𝑖is the error of band i. It is 

assumed that the sum of the fractions must equal 1. 

This model creates synthetic images that represent each component’s proportion within an 

image pixel. The number of bands is reduced to the number of components used in the model, 

which reduces the volume of data. For this study, three endmembers were chosen, green 

vegetation (GV), soil and shadow, as expressed in equation 2: 
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𝑅𝑖 = 𝑓𝐺𝑉 ∗ 𝑅𝐺𝑉𝑖 + 𝑓𝑠𝑜𝑖𝑙 ∗ 𝑅𝑠𝑜𝑖𝑙𝑖 + 𝑓𝑠ℎ𝑎𝑑𝑜𝑤 ∗ 𝑅𝑠ℎ𝑎𝑑𝑜𝑤𝑖
+ 𝑒𝑖 (2) 

 

To find the endmembers, a 2D scatterplot of the red (x axis) and near infrared (y axis) 

bands was created. The analysis of the scatterplot allowed the identification of clusters that 

represent each component’s spectral behavior (soil, vegetation and shadow). After selection, a 

false composite RGB (5,4,3) was made, enabling the choice of samples for each component to 

generate the image fractions from the LSMM. 
The steps described above were applied in both images; since, according to Smith et. al. 

(1990), the values of pure components from the interest image are valid only for the scene 

they were picked from; therefore, they cannot be applied on other images, neither if the area is 

the same (but acquired with another sensor), nor under distinct illumination and atmospheric 

conditions. 

With the results from the LSMM, the contribution of each component for the scene was 

then calculated. For this study’s purposes, only the vegetation fraction was taken into account 

for detecting vegetation changes. 

 

2.4. Green Vegetation Index and Change Detection 

According to Lu et al. (2014), the GV index (equation 3) is used to detect vegetation gain 

and loss, as well as identify small variations in the vegetation. 

 

𝐺𝑉𝑖𝑛𝑑𝑒𝑥 =
𝑓𝐺𝑉

1.1 − 𝑓𝐺𝑉
 (3) 

  

This index varies between 0 and 10. The value 1.1 in equation 3 is to avoid 0 values in 

the denominator, just in case the vegetation fraction equals to 1. Having an exponential 

relationship with the vegetation fraction (fGV) small changes are enlarged by using GV index 

(Lu et al., 2014). 

For the purpose of finding vegetation loss and gain, the difference between 2001 and 

2004 GV index was calculated. As a result, values near zero indicate no change, positive 

values points to vegetation loss and negative values show a gain in vegetation. Still, it was a 

need to establish thresholds which would allow to identify areas with no change, large 

changes and small changes (gain and loss) caused by conversion and modification. For 

selecting the thresholds, the histogram of the difference image was divided in five regions, 

two of loss (small and large), two of gain and one of no change, based in its statistical 

parameters mode and standard deviation. The distances of 1.5 and 3 standard deviations in 

relation to the mode were used as thresholds (Figure 3b). 

The mode was chosen rather than the average, because as the change detection was 

established for images with short time interval, the average is shifted to the vegetation loss 

region, generating an asymmetric histogram. In contrast, the mode, which corresponds to the 

zero value, is centered in the no change class. 

In order to compare the results obtained with the GV Index, a map with the vegetation 

fraction (fGV) difference was made, using the same procedures to choose the thresholds 

(Figure 3a). 
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Figure 3. Histogram of vegetation fraction (fGV) difference (a) and GV Index difference 

(b). The dotted lines represent the thresholds. 

 

3. Results and Discussion 

Figure 4 shows a colored composite of the three fractions derived from the LSMM for 

2001 and 2004. It is possible to distinguish exposed soil (in red), water bodies (in blue) and 

predominantly green vegetation (in green). The cloudy areas in the image of 2004 were 

excluded from the analysis of land cover change detection, in order to improve final results. 
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Figure 4. Colored composite of the three fractions (soil, vegetation and shadow) derived 

from the LSMM for 2001 (a) and 2004 (b). 

 

The 2001 and 2004 vegetation fractions derived from the Linear Spectral Mixture Model 

are presented in Figure 5 a and b. Clear pixels represent areas composed mainly by vegetation 

(values near 1). These areas are usually associated with undergrowth vegetation (shrubs and 

saplings). Forested areas were the ones with intermediate values due to major contribution of 

the shadow fraction. Dark pixels are associated with bare soil, clouds or water, without 

vegetation. The GV index images (Figure 5 c and d) exhibited similar patterns, with the 

clearest pixels representing vegetation and the darkest pixels soil and shadow. Nonetheless, 

the GV Index varies between 0 and 10. When comparing the vegetation fraction and the GV 

index from both years, it is possible to notice land cover changes, especially in the eastern 

region, outside the FLONA boarders.  

 

 
Figure 5. Vegetation fraction and GV Index of the years 2001 and 2004. 
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Maps with the vegetation fraction (fGV) and GV index difference between 2001 and 2004 

are showed in Figure 6. These maps highlight changes in vegetation, gain in blue and loss in 

red color. Most part of the area; however, has not changed. The area within the FLONA limits 

displayed small changes, which is probably related to vegetation loss caused by a logging 

episode in September 2001. Changes outside the FLONA limits are mostly associated with 

phenological stages of plantations, so these changes are not necessarily related to land cover 

change. 
 

 

 
Figure 6. Vegetation fraction and GV index difference map. 

 

Table 1 shows that by opposing the scope of the classification of the two methods, the 

GV Index showed higher sensitivity in the classification of small losses, increasing 7.88 km
2 

of this class in relation to fGV. Thus, the GV Index was more suited to detect small losses of 

vegetation. The fGV was more sensitive to detect large changes, mainly to large losses. 

Moreover, the changes detected by fGV within the area of the FLONA seems to apparently 

spread more throughout the area, while the GV Index appears detect more localized changes. 

 

Table 1. Area of the classes derived by the fGV and the GV Index 

Classes 

fGV         

Total Area 

GV Index 

Total Area 

Difference 

Area 

(km
2
) (km

2
) (km

2
) 

Large gain 6.14 5.28 -0.86 

Small gain 10.23 7.56 -2.66 

No Change 1476.70 1485.65 8.95 

Small loss 79.38 87.26 7.88 

Large loss 41.93 28.62 -13.31 
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4. Final Remarks 

By using the GV index it was possible to detect slight land cover changes in the study 

area, especially in vegetation, confirming its importance and relevance already observed by 

Lu et al. (2014). The association of the LSMM and the GV index was an important step on the 

detection of vegetation cover and condition changes. 

The technique used in this study was useful to identify small changes within and outside 

the FLONA Tapajós. As a final point, these techniques have a great potential and should be 

applied on the monitoring of protected areas. 
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