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Abstract. This paper describes the process of multisensor time series composition intended for land-use and
land-cover classification. Our objective is to verify the robustness of the Time Weighted Dynamic Time Warp
algorithm when applied on images from multiples sensors. Our approach increased temporal resolution to
improve the quality of classification. Our data was acquired between 2000 and 2016 and a small area of Mato
Grosso, Brazil was analyzed. The results utilizing multisensor composition are promising and consistent with
early results of lower resolution images.
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1. Introduction
Remote sensing technology was first developed in 1960s. Thereby, remote sensing shifts from

rustic black and white aerial photography to high resolution image. Currently, more than 1000
operational satellites orbit around Earth. Among them, Landsat satellites series are remarkable,
since it provides the longest and the most informative temporal record of space-based surface
observations, spanning over 40 years (WOODCOCK; ALLEN et al., 2008). This long term time series
dataset represents a great opportunity to monitor land surface and ecological dynamics (KENNEDY;
YANG; COHEN, 2010).

Considering the importance of spatiotemporal analysis, many efforts have been made in order to
develop and improve algorithms and tools (SCHMIDT et al., 2015; VERBESSELT et al., 2010; MAUS et al.,
2016b). In this context, land cover and land use classification algorithms that priorize time dimension
have been used to identify forest disturbances (ZHU; WOODCOCK; OLOFSSON, 2012), agriculture
and pasture growth (SAKAMOTO et al., 2009; RUFIN et al., 2015), and urbanization dynamics (SETO;
FRAGKIAS, 2005) among others. Here, we are particularly interested in the work of Maus et al.
(2016a) whose developed an classification algorithm based on DTW (BERNDT; CLIFFORD, 1994)
mainly for use on analysis of phenology called Time-Weighted Dynamic Time Warping (TWDTW).

TWDTW provided good classification results when applied on MODIS MOD13Q1 product over
the Amazon biome in Mato Grosso brazilian state (MAUS et al., 2016b). Although the results were
satisfactory for the characteristics of that region, this may be not the case to more heterogeneous
areas, where a 250m spatial resolution would not capture relevant details. However, a more accurate
orbital sensor may have a drawback that is to introduce noise into classification process. Moreover,
orbital sensors with a higher spatial resolution than MODIS, as Landsat (30m), can be subjected
to worse temporal resolution. To overcome this limitation we have composed a time series with
different Landsat sensors and MODIS.
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We aim to verify the TWDTW algorithm robustness applying it on a multisensor satellite time
series with different spatial and temporal resolutions. In this manner, the present work aimed to apply
the algorithm by means of both aforementioned sensors data, in order to analyze its performance in
comparison to an MODIS only application.

This paper is organized as follows: first, we present the broad context in which our work relates
with land-use and land-cover classification; second, we explain our material and methods; third, we
present some results and, finally, we make some final remarks.

2. TWDTW
The Dynamic Time Warping (DTW) is an algorithm that compares an unknown time series with

a temporal signature (VELICHKO; ZAGORUYKO, 1970). It identifies all possible alignments between
two time series and provides dissimilarity measures (RABINER; JUANG, 1993). Based on DTW,
the TWDTW algorithm was created to be sensitive to seasonal changes of natural and cultivated
vegetation types (MAUS et al., 2016b).

As TWDTW is a supervised classification algorithm, we must provide to it a set of patterns with
land cover classes. TWDTW searches all the patterns on time series and similar matches periods are
associated with the respective class. TWDTW is able not only to identify the spectral signatures
along raw data time series, but also to extract information about the phenomena based on the period
that it occurs. For more details about TWDTW see Maus et al. (2016a, 2016b).

3. Materials and Methods
3.1. Study Area

The study area comprehends about 9.6km× 8km and is localized in Ipiranga do Norte (Mato
Grosso, Brazil) municipality as we can see in Figure 1. Firstly, it was chosen considering the
existence of 603 field sample points. Secondly, as we want to compare the result we have choose the
same area as used in Maus et al. (2016a). Besides that, it is also important to analyze the perimeter
due to its high numbers of agriculture expansion at the expense of the rates of the original forest
cover, including in the neighboring municipalities, as Porto dos Gaúchos, analyzed by (MAUS et al.,
2016b).

3.2. Data
To compose our time series, a total of 986 scenes were collected. Image time series for land

cover classification requires an adequate temporal resolution and time span, since each land cover
class has a distinct phenological cycle (YANG; ZHANG, 2012). All the data are freely available at
USGS website (http://www.usgs.gov).

The data used was the time series of Enhanced Vegetation Index (EVI) and Normalized Difference
Vegetation Index (NDVI) from January 2000 to July 2016, of MODIS and LANDSAT products.
Differently from NDVI, EVI minimizes canopy background variations, maintains sensitivity over
dense vegetation conditions and remove residual atmosphere contamination. Vegetation indexes
admit several uses, for instance, to characterize land cover conversions.

The Landsat series EVI indexes were produced from TM, ETM+, and OLI, which temporal
resolution is 16 days, 30m spatial resolution and Universal Transverse Mercator (UTM) map
projection. he MOD13Q1, from MODIS VI Product Sequence, Terra MODIS, is acquired every
16 days at 250m spatial resolution. The Global MOD13Q1 data are provided as a gridded level-3
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Figure 1: Study Area. The purple points indicate the samples between August 2010 and August
2011.

product in the sinusoidal projection. All images were co-registered.

3.3. Methods
Our multisensors time series have been made by means of stack composition. A total of three

stacks, EVI, NDVI and days of the year (DOY) were created, each one with 986 images. All three
stacks were time ordered and had the same temporal and spatial extents, analogously to a stacked
deck of cards. Furthermore, we resampled MODIS pixels from 250m to 30m through the technique
nearest neighbor. This process was required due to image stack alignment. We can see in Figure 2
an example of the NDVI time series of a random pixel and the respective source of each value.

Figure 2: NDVI time series of a random pixel and the source of each value.

We were careful to remove the pixels without data, as cloudy pixels, shade pixels and possible
sensor errors. As a result, some pixels may have more data than others. The Landsat 8 image is
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Figure 3: Identified spectral signature patterns

located on the left side with remarkable clouds pixels. We used the cloud mask provided by product
data. It is also important to notice that although it has been removed a large portion of clouds, some
of them persisted on several regions. We fixed the value NO_DATA to those pixels with more than
13% of clouds confidence, which means that they were not considered in the TWDTW algorithm.

The data inputs were three components, the previously created bricks, a text file timeline
containing the years of the images, and a set of ground truth samples. Those samples have spatial
locations (longitude and latitude), date of acquisition and label for each field sample. The field
samples were divided in 6 main classes: cotton-fallow, forest, soybean-cotton, soybean-maize,
soybean-millet and others.

After that, we build a raster time series, with the bricks and timeline. Through the field samples,
the dtwSat package provides a possibility to create spectrotemporal patterns using a function that
fits a Generalized Additive Model (WOOD, 2011). This function provides better fit to satellite data
than purely parametric models (MAUS et al., 2016b). The patterns created can be viewed in Figure 3.

Before the classification step, we pre-classify the data assessing quality and information that
contain the template pattern. It is realized in order to produce consistent results for the following
classification step. Finally, to classify the raster time series, we applied TWDTW in each pixel for
both vegetation indices.

4. Results and Discussion
Spectro-temporal signature patterns were obtained by dtwSat for each analyzed target through

the sample type provided by the package. Although it was analyzed from 2000 to 2016, a sequence
of 6 years were selected to present the local land-cover development Figure 4.

Although the Figure 4 presents some classification, it is not possible to assert with high accuracy
that they represent the ground truth. In this manner, no detailed explanation was made. However, it
is possible to notice a close relation with MODIS only classification made in Maus et al. (2016a) as
we can see by comparing with Figure 5.

6946



Figure 4: Multisensors time series classification results for 2008-2013.

Figure 5: MODIS only time series classification results for 2008-2013. Source: Maus et al. (2016a).
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Actually, TWDTW identifies spectro-temporal signatures along the time according to the
extracted spectral patterns of sample areas. To assess the classification accuracy of this process,
(MAUS et al., 2016a) have splitted the ground truth samples into training and validation sets. Their
results showed that User’s Accuracy and Producer’s Accuracy were high, demonstrating TWDTW
accuracy confidence and robustness for MODIS only time series. However, here we did not made
those measurements here.

In 2013 (Figure 6), it is also possible to notice the manifestation of a noise pattern, observed
as alternating lighter and darker bands. In the darker bands, we fixed the value NO_DATA, which
means that are not taken going to be taken into account for the extraction of time series.

Figure 6: Comparison between 2013 EVI Landsat 7 Original (a) and classified image 2013 (b)

5. Conclusion
A composition of multi sensors Landsat and MODIS was defined, aiming to decrease the period

of time between the collected images. As a first approach, we intended to test the robustness of
TWDTW algorithm in dealing with multi sensor composition without taking into account its radiance
sensibility differences.

It is possible to apply the algorithm developed by (MAUS et al., 2016b) for more accurate spatial
resolution sensor, considering that the obtained results were satisfactory. However, some caveats
must be done mainly regarding to adjustments.

Integrating multisensors have as a disadvantage the difference in resolutions and in radiance
sensibility sensors. This last one can be notice among LANDSAT series (HOLDEN; WOODCOCK,
2016). In this manner, to reduce deleterious atmospheric and sun surface-sensor spectral variations,
a radiometric normalization based on nearest temporal satellite image from Landsat 7 should be
made. Nonetheless, according to the aim, different normalization strategies can be used by authors
(HANSEN et al., 2008). This technique was not used in this work, which may have led to errors in the
final classification. Besides that, clouds and errors create gaps in time series and this also impacted
the final classification.

In this context, more supporting studies should be performed to refine the data here presented,
including: i. analyze the influence of different normalization processes in classification result; ii.
aim to fill the gaps found in the time series; iii. map crossing tests; iv. use of different cloud detectors
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to proceed a better cloud removing process; v. adjustment of the space/time for each class; vi. verify
potential adaptations of TWDTW algorithm in order to overcome ETM+ SLC failure (black straps).
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