STUDY OF MIXOTROPHIC GROWTH OF THREE SPECIES OF MICROALGAE FOR BIODIESEL PRODUCTION

Carla Soares da Silva*, Luisa F. Rios, Rubens Maciel Filho.

Abstract
The use of microalgae for biodiesel production has great advantages over other raw materials that are currently being used. The fact that they have a high biomass production, rapid growth and do not compete with food production make the study of microalgae very important to enable the production of biodiesel originated from them on a large scale.

Key words: microalgae, biodiesel, mixotrophic growth

Introduction
Microalgae have different ways of energetic metabolism: autotrophic, mixotrophic and heterotrophic.1 The mixotrophic metabolism is defined as one that uses both external organic carbon and solar power as an energy source. The aim of this work was to study three species of microalgae: Chlorella Vulgaris, Desmodesmus brasiliensis, and Desmodesmus sp. in mixotrophic conditions of growth, using glucose and glycerin as external organic carbon sources.

Results and Discussion
Microalgae were grown in BG-112 medium supplemented with 10g/L of carbon source (glucose or glycerin). The growth was carried out in 250ml Erlenmeyer containing 200mL of culture medium and 10% of microalgae inoculum. The experiment was carried out under the following conditions: the luminous flux of 62 \(\mu \text{E m}^{-2} \text{s}^{-1} \) for 24h, shaking rate of 250 rpm and temperature of 26 ± 4 °C for a period of 9 days. All the experiments were performed in duplicate.

The cell concentration was measured using a UV spectrophotometer (Agilent Technologies, Cary model 60). At the end of the growing period, the biomass was removed by centrifugation (Eppendorf, model 5810) at 4500 rpm and extraction of lipids was carried out by the Bligh and Dyer procedure.3

In the cultivation with glucose, Chlorella Vulgaris obtained a final biomass concentration of 3.32 g/L, while Desmodesmus sp. obtained 3.64 g/L and Desmodesmus brasiliensis obtained 3.82 g/L.

In the cultivation enrich with glycerin, the Chlorella Vulgaris obtained 0.31g/L and Desmodesmus brasiliensis obtained 0.20 g/L. The species Desmodesmus sp. showed no growing capabilities. Growth rates are shown in Chart 1.

<table>
<thead>
<tr>
<th>Species</th>
<th>Chlorella vulgaris</th>
<th>Desmodesmus brasiliensis</th>
<th>Desmodesmus sp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose(^4)</td>
<td>0.661</td>
<td>0.699</td>
<td>0.446</td>
</tr>
<tr>
<td>Glycerin</td>
<td>0.085</td>
<td>0.089</td>
<td>-</td>
</tr>
<tr>
<td>Autotrophic(^5)</td>
<td>0.089</td>
<td>0.101</td>
<td>0.070</td>
</tr>
</tbody>
</table>

Chart 2 shows the accumulation of lipids. Desmodesmus brasiliensis showed less accumulation of lipids with glucose and the highest with glycerine, while Desmodesmus sp. had the highest lipid accumulation with glucose.

Conclusions
The results show that glucose is the best among the carbon sources presented for allowing a high biomass concentration.

Considering the cultivation using glucose, Desmodesmus brasiliensis showed the highest biomass concentration, but the worse lipid accumulation. Desmodesmus sp. obtained the best results in lipids accumulation. Combining biomass and lipid accumulation, we conclude that Desmodesmus sp. has the biggest potential to be used as source for biodiesel production.

Acknowledgement
The authors thank financing from the Scholarship Program for Scientific and Technological Initiation (PIBIC), quota 2015/2016 and São Paulo Research Foundation (FAPESP) Processes n. 2014/10064-9.