Electrochemical study of glycerol oxidation on gold surfaces covered by metallic monolayers


Abstract
In this work we are investigating the glycerol electrooxidation on polycrystalline gold disks covered by monolayers of different metals (Cu, Bi, Pb). Cyclic voltammetry is used both to deposit the monolayers on the gold disk surface, as well as to investigate the presence of oxidation peaks related to the mechanism of glycerol oxidation.

Key words:
Glycerol, Cyclic Voltammetry, Electrocatalysis.

Introduction
The increasing demand for fuels in the recent years has been stimulating the research for alternative and renewable sources. The biodiesel, produced from biomass conversion, has proven to be one of the major fuel sources for renewable fuels, however the main obstacle for the development of this industry is its low value-added subproducts, such as glycerol (GlOH)1.

The oxidative conversion of GlOH is a very promising way for the generation of value added compounds from the biodiesel waste, which can in turn be coupled with a hydrogen conversion cell, depending on the electrochemical reactor setup.

In the present work, we aim to investigate the oxidative conversion of GlOH on gold electrodes covered with metallic (Cu, Bi, Pb) ad-atom monolayers.

Results and Discussion
We have characterized the gold disk electrodes by using cyclic voltammetry (CV) in a 0.5 M H2SO4, followed by deposition of Copper ions on the electrode surface by performing an underpotential deposition (UPD) from a 1mM CuSO4 solution, as shown on Image 1. A monolayer of Cu atoms was deposited on the electrode by holding the potential at 0,27 V for 5 minutes, and bulk deposition of Cu ions was shown to begin at 0,23 V.

Image 1. CV profile of the gold electrode in 0,5 M H2SO4 solution (black) and a profile of Cu deposition from 1 mM CuSO4 solution. Scan rate 10 mV s-1.

The glycerol electrooxidation (GIEO) was performed in a CV experiment with an electrolyte solution consisting of 0,5 M NaOH solution with 1 mM glycerol concentration. The oxidation was performed in both clean Au surface and after deposition of metallic Cu monolayer.

Image 2 shows the profiles obtained after the oxidation, and it indicates an increase in the oxidation current after the Cu deposition, suggesting that the Cu monolayer improves the GIEO on gold surfaces. Since the Cu is capable of increasing the oxidation current, it is likely also interfering with the oxidation mechanism of GlOH on gold.

Image 2. CV profile of the GIEO in a 0,5 M NaOH solution containing 1 mM GlOH. Blank profile (black), GIEO in a clean Au electrode (red) and after deposition of Cu monolayer (blue). Scan rate 5 mV s-1.

Conclusions
We concluded that the GIEO was improved by Cu deposition. The next step will be to investigate the reaction pathways, followed by further investigation with different metals of other ad-atoms, such as Pb, Bi, etc and their effects on the GIEO.

Acknowledgement
We want to thank FUNCAMP for the FAEPEX program.

DOI: 10.19146/pibic-2016-51725