‘MUFFIN’ MADE WITH WHOLEMEAL PUMPKIN FLOUR: TECHNOLOGICAL AND SENSORY QUALITY.

Gustavo C. do Nascimento*, Michele Scarton, Maria Teresa P. S. Clerici.

Resumo

The pumpkin (‘Curcubita maxima’) is a vegetable source of fiber, vitamins and minerals, but is restricted to fresh consumption and homemade preparations. The aim of this study was the obtention of a wholemeal pumpkin flour (WPF) and its application in muffins. The physical-chemical and technological characterization of WPF was made and it was used to partially replace wheat flour in 0 (F0), 5 (F2) and 10% (F3) to production of cakes, submitted to technological and sensorial analysis. The WPF is a product rich in dietary fiber (32.56 ± 3.89%) and can be used in this studied concentrations to produce cakes with the similar specific volume and firmeness, but with diferents tonalities of yellow color. The cake with more sensorial acceptance was produced with 5% of WPF (F1), indicating the potential use of wholemeal pumpkin flour in bakery products.

Palavras-chave:

Cucurbita maxima, healthiness, bakery.

Introduction

Pumpkin is mainly produced by small farmers. Nowadays, muffin is a tendency in bakery products, consumed as a snack². This research aimed develop a wholemeal pumpkin flour (WPF) with conventional drying method for replace wheat flour in muffin.

Results and Discussion

For obtain WPF, the pulp and the skin of pumpkin were used. Pumpkins were sanitized, cut, blanched, dried in a tray dryer with forced air for 6h at 50°C, crushed and sieved. The chemical composition of the WPF resulted in the following values, according to the methodology¹ - ³: 7.17 ± 0.09% moisture; 4.02 ± 0.36% fat; 13.0 ± 0.07% protein; 6.56 ± 0.09% ash; 32.56 ± 3.89% of dietary fiber; and 36.56 ± 3.89% digestible carbohydrates, calculated by difference.

The results for colorimetric analysis of WPF was performed on HunterLab colorimeter Mini ScanXE, illuminant D65 for the parameters L, a*, b* and presented 69.3 ± 0.07; 24.6 ± 0.07; 64.2 ± 0.53 respectively, showing strong orange color⁴.

The muffins were manufactured according to the flowchart in Figures 1 and 2.

The texture of the muffins, analyzed with texturemeter TA-XT2i, the specific volume of muffins and crumb color can be seen in Table 1.

The purchase intention are expressed in Figure 3 (a), where 1 is “Definitely wouldn’t buy” and 5 “Definitely would buy”. The sensory evaluation² are expressed in Figure 3 (b) where 1 is “Dislike extremely” and 9 is “Like extremely”.

Table 1 – Technological characterization: crumb color, texture and volume of muffins control (F0) and containing pumpkin flour (5% = F1 and 10% = F2) #

<table>
<thead>
<tr>
<th>Parameter</th>
<th>F0</th>
<th>F1</th>
<th>F2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texture (kg.f)</td>
<td>1.52±0.09b</td>
<td>1.24±0.09b</td>
<td>1.57±0.19a</td>
</tr>
<tr>
<td>Volume (mL/g)</td>
<td>2.25±0.01b</td>
<td>2.28±0.08b</td>
<td>2.41±0.02a</td>
</tr>
<tr>
<td>Crumb color</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a*</td>
<td>81.05±0.29a</td>
<td>76.34±0.05b</td>
<td>73.48±0.26c</td>
</tr>
<tr>
<td>b*</td>
<td>1.98±0.26c</td>
<td>9.07±0.19b</td>
<td>13.34±0.69a</td>
</tr>
<tr>
<td>c*</td>
<td>28.71±0.50c</td>
<td>56.03±0.16b</td>
<td>65.59±0.60a</td>
</tr>
</tbody>
</table>

#Different small letters on the same lines show that differ by test Scott-Knott (p ≤ 0,05).

Figure 3 – Sensory Evaluation of muffins: (a) Purchase intention; (b) Acceptance test

Conclusion

This research proved be possible to use WPF as partial substitute of wheat flour in muffins. The muffin with 5% of WPF (F2) had better sensory acceptance.

Acknowledgments

The authors thank PIBIC / Unicamp for undergraduate research scholarships, CAPES by the master’s scholarships, the FAEPEX-Unicamp for research assistance and EUROGERM by wheat flour supply.

Bibliography

²Bender, A. B. B. (2015). Fibra alimentar a partir de casca de uva: desenvolvimento e incorporação em bolos tipo muffin. (Dissertação de mestrado). Universidade Federal de Santa Maria, Santa Maria, RS.

DOI: 10.19146/pibic-2016-51584