The discovery of natural products with antifungal activities through microorganism competition

Cristiane I. Wassano*, Célio Fernando Figueiredo Angolini, Marcos Nogueira Eberlin, Taícia P. Fill

Abstract
The co-culture between Penicillium digitatum and Penicillium italicum (both pathogens of citrus fruits) provides competitive and mutualistic forces that induce the synthesis of chemically different metabolites, as a defense mechanism, which can inhibit the growth of neighboring species.

Key words:
Co-culture, natural products, antifungals

Introduction
Since Brazil is the largest producer and exporter of oranges in the world, the demand for techniques aiming quality control is indispensable considering the losses caused by post-harvest fungal diseases1. The main causes of orange rot are the fungi Penicillium digitatum and Penicillium italicum (the two major citrus pathogens). This research focuses on the interactions between these two fungi through mixture cultures. The microbial competition for limited space and nutrients is a major ecological force that could activate silent gene clusters leading to the production of bioactive secondary metabolites, also called natural products, which are not directly involved in growth, development or reproduction of the producing organism, but provide advantages in many aspects to maintain its survival2.

Co-cultures are highly relevant for drug discovery and they allow not only the identification of new compounds, but also to investigate chemical events that govern interactions between microorganisms3.

Results and Discussion
To investigate the effect of mixed cultivation on secondary metabolism, it was carried out single and co-culture experiments with Penicillium digitatum and Penicillium italicum, in PDA (Potato Dextrose Agar) solid media. In the co-culture experiment a growth inhibition between the two fungi was identified as seen in Figure 1, suggesting the production of antifungal defense metabolites.

In order to evaluate metabolite production, the co-culture interface was extracted with dichloromethane, ethyl acetate and methanol. The extracts were analyzed by HPLC/MS and Mass Spectrometry Imaging (MSI).

Interactions among neighboring fungi exhibited significant chemical changes relative to their respective single cultures. Figure 1B shows mass spectrometry imaging (MSI) of the co-culture. It is possible to visualize the spatial distribution of the chemical compounds produced by the fungi in a competitive environment and understand how the compounds are involved in the chemical interaction guiding us to antifungal natural products discovery.

In order to evaluate the fungal extracts concerning antifungal activity, a biological assay was performed in a 96-well plate, by adding 50μL of liquid medium PD (Potato Dextrose), 30μl milli-Q water and 20μl of Penicillium digitatum spore suspension in each well, followed by addition of extract of co-cultivation. The growth inhibition of Penicillium digitatum caused by secondary metabolites synthesized in co-culture is shown in Figure 3, columns 4,5 and 6.

Figure 3. Antifungal activity assay with co-culture extracts.

Conclusions
The competition between microorganisms is a powerful method for the discovery of new bioactive natural products. In a competitive environment, Penicillium italicum produces chemically different substances that inhibits the growth of Penicillium digitatum, species that dominates the culture medium when cultivated alone. The antifungal metabolites induced are now under investigation in our laboratory.

Acknowledgement
This work was supported by FAPESP (2015/10384-6). We also thank “Fundo de Apoio ao Ensino, Pesquisa e Extensão” (FAEPEX).