Particulate Bond Mercury in Biomass Burning

Arthur A. Frazon*; Mariana Almeida; Maria Cristina Forti; José Carlos dos Santos; João A. Carvalho Jr., Anne Hélène Fostier.

Abstract
Forest litter was burned in a combustion chamber. Particulate matter (PM) emitted during the fire was sampled on a multistage impactor with particles nominal cut size ranging from 10000 nm (inlet) to 10 nm (last stage). The PM mass and the Hg concentration were determined for each stage by Direct Mercury Analyzer (DMA-80, Milestone). The results show that the main part of PBM emitted during forest burning should likely be regionally (not locally) deposited, because fine particles are transported to longest distance than the coarsest.

Key words:
Mercury, Particulate Material, Biomass Burning.

Introduction
Several studies have indicated forest fires as an important mechanism to re-emit previously atmospherically deposited mercury (Hg) to the atmosphere. Burning results in loss of Hg from vegetation and soils as gaseous elemental Hg (GEM) and particulate-bound Hg (PBM). Particulate Hg released in smoke during burning has the potential for local redeposition, whereas gaseous Hg becomes part of the global Hg cycle. Transport of PBM depends on particle size and mass. In Brazil, atmospheric Hg emissions due to the Amazonian forest burning have been estimated to 6-7 ton yr⁻¹, but more data are needed to assess the impact on the regional Hg biogeochemical cycle.

Results and Discussion
The experiment was performed in a large combustion chamber (2.5x2.5x2.5 m³). The burned litter sample and the remaining ash were weighed. Hg concentration in litter and ash samples and in filters was determined by Direct Mercury Analyzer (DMA-80, Milestone). Previously decontaminated quartz filters (500 °C, 1h) were weighed before and after the experiment in order to obtain PM mass sampled. Data (Tab.1) show that 95.5% of the Hg initially stored in the litter was emitted during the burning. According to Fig.1, the highest Hg concentrations were found on particles > 560 nm. Nevertheless, as the main part of the PM (96%) was < 560 nm, the total mass of Hg bound with fine particles was twice the total mass bound with coarser particles (>560 nm). The results show that the main part of PBM emitted during forest burning should likely be regionally (not locally) deposited, because fine particles are transported to longest distance than the coarsest.

Table 1: Experimental data of burning experiment.

<table>
<thead>
<tr>
<th></th>
<th>Litter</th>
<th>Ash</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass (g)</td>
<td>5006</td>
<td>812</td>
</tr>
<tr>
<td>Hg concentration (ng g⁻¹)</td>
<td>16.8</td>
<td>4.7</td>
</tr>
<tr>
<td>Total mass of Hg (µg) in the burned sample</td>
<td>83.1</td>
<td>3.8</td>
</tr>
</tbody>
</table>

Conclusions
The results show that the main part of PBM emitted during forest burning should likely be regionally (not locally) deposited, because fine particles are transported to longest distance than the coarsest, therefore, it can be a huge harmer to human health.

Figure 1: Mass of PM and Hg concentration on each stage/particle size (inlet nominal cut size = 10,000 nm).

Acknowledgement
UNICAMP, CNPq and FAPESP (2010/19040-4).


DOI: 10.19146/pibic-2016-50643