The effect of vitamin D in the evolution of experimental autoimmune encephalomyelitis. Effect on B-lymphocytes function.

Leonilda M. B. Santos (PQ), Paula G. Russini (PG), Amanda B. Piffer (IC), Vitor A. Silva (EM), Vanessa C. B. Mariano (EM), Stephani O Alves (EM), Fabiana F. Aquino (EM).

Abstract
The first evidence that vitamin D3 deficiency can be an environmental risk factor for multiple sclerosis (MS), has come correlation between the spatial distribution of the EM incidence of UV rays and the prevalence of MS. The immunomodulatory effect of vitamin D3 has been demonstrated in experimental autoimmune encephalomyelitis (EAE). EAE is an inflammatory disease of the central nervous system widely accepted as a model for studying MS. The mechanisms by which vitamin D leads to attenuation of EAE are constant source of study. In addition, suppressor B cells can downregulate the immune response in animal models of inflammatory diseases in mice. An evaluation is the implication of treatment with vitamin D3 in response via B cells during the clinical course of EAE.

Key words: Vitamin D, experimental autoimmune encephalomyelitis, suppressor B cell

Introduction
Vitamin D deficiency is associated with an increased risk of multiple sclerosis (MS) and unfavorable MS disease progression. The immunomodulatory effect of vitamin D has been demonstrated in an experimental model of MS, the experimental autoimmune encephalomyelitis (EAE). EAE is an antigen-driven autoimmune model in which immunization against myelin autoantigens elicits strong CD4+ T lymphocyte responses, which initiate its pathology with central nervous system myelin destruction. Furthermore, B-lymphocytes are also involved in both the pathogenesis and on disease control. The effect of vitamin D on B cells function in EAE model deserves additional studies. Thus, the objective of this work is to investigate the effect of vitamin D on both clinical evolution of EAE and on B lymphocytes function.

Results and Discussion
EAE was induced by immunization with MOG35-55 peptide emulsified in complete Freund adjuvant. The clinical expression of the disease was graded on a clinical scale 0-5 according to the severity of the disease. Vitamin D3 (cholecalciferol D3 Sigma Aldr. Mo, USA) was diluted in polyethylene glycol and give orally (5µg/Kg/day) during 2 weeks. The control group was fed with vehicle alone (15 animal/group were studied in three independent experiments). The expression of cytokine mRNA was evaluated by quantitative RT-PCR. The subsets of B and T lymphocytes were determined by Flow cytometry (Galilus, Coulter, USA). The present study demonstrated the immunomodulatory effect of vitamin D3 in the EAE model. Animals treated with vitamin D3 had a much less severe disease than the control group. The reduction of the severity of the disease was simultaneous with decreased inflammatory response evaluated by the increase of regulatory B-lymphocytes and anti-inflammatory cytokines. These lymphocytes and cytokines act on the autoreactive T lymphocytes, probably by inhibiting the migration of these cells into the central nervous system, which explains the reduction in disease severity.

Conclusions
We demonstrated that the oral administration of vitamin D significantly reduced the severity of EAE. The reduction of the severity of the disease was accompanied by the increase number of B lymphocytes, reduction of pro-inflammatory cytokines such as IFN-γ and IL-17 and increase of anti-inflammatory cytokines such as IL-10.

Acknowledgement
FAPESP, CNPq and CAPES