Soluble Guanylyl Cyclase Expression (sGC) in Platelets in Experimental Sepsis: Effect of the sGC Activator BAY 60-2770

Edson Antunes (PO), Camila B. Mendes-Silverio (PG), Paulo Inácio Bueno (PG), Priscila Kakuda (IC)

Abstract
Soluble guanylyl cyclase (sGC) acts as the principal intracellular receptor for nitric oxide (NO), facilitating the generation of cyclic GMP. Soluble guanylyl cyclase is a heterodimeric complex consisting of two subunits, α and β, each of which contains three domains, namely one domain N-terminal regulator, a region of dimerization and a C-terminal domain that is responsible for substrate recognition and activity catalytic of GCs, which is responsible for the conversion of GTP to cGMP. NO-independent sGC stimulators/activators have emerged as valuable tools to elucidate the physiopathology of the NO–cGMP signaling pathway in pathophysiological conditions. Stimulators of sGC (BAY 41-2272) depend on presence of the reduced haem (Fe2+) prosthetic moiety within sGC, whereas sGC activators (BAY 58-2667 and BAY 60-2770) are able to activate the enzyme when the heme is oxidized (Fe3+). The NO-sGC-cGMP signaling is impaired in conditions when oxidized heme (Fe3+). Lipopolysaccharide (LPS) is widely used to mimic sepsis conditions. Platelets obtained from LPS-treated rats display high intracellular levels of reactive-oxygen species (ROS), which may lead to sGC degradation. Therefore, this project aimed to evaluate the protein expressions of α and β-subunits of sGC in washed platelets from LPS-treated rats. The effects of BAY 41-2272 and BAY 60-2770 in ADP- and thrombin-induced platelet aggregation from control and LPS will be also investigated.

Key words: soluble guanylyl cyclase, sepsis, oxidative stress,

Introduction

The nitric oxide (NO)-independent soluble guanylyl cyclase (sGC) activator BAY 60-2770 reactivates the heme group of the enzyme in vessels and platelets in pathological conditions. This study was undertaken to investigate the effects of the NO-independent sGC activator BAY 60-2770 in washed platelets from rats treated with LPS (Escherichia coli, L4130) to mimic sepsis. The hypothesis that sGC oxidation potentiates the antiplatelet activities of BAY 60-2770 has been tested.

Results and Discussion

Platelet aggregation was performed with an optical aggregometer (Chrono-log) at 37°C with 400 mL of washed platelets placed in glass cuvettes. The maximal aggregation (%) was calculated using the Aggrolink Software (Chrono-log). Krebs solution without vehicle provided a signal representing 0% aggregation.

BAY 60-2770 or its vehicle dimethylsulfoxide (DMSO, 50%) was added to washed platelets 3 min prior to activation with ADP (20 µM).

Incubation with BAY 60-2770 (1 to 10 µM) produced a significant inhibition of ADP (20 µM)-induced platelet aggregation in control rats (Figure 1).

Figure 1. Inhibitory responses produced by BAY 60-2770 (1, 3 and 10 µM) in ADP-induced washed platelet aggregation from control rats. Maximal aggregation (%) was calculated using the Aggrolink Software (Chrono-log).

Conclusions

BAY 60-2770 inhibits ADP-induced washed platelet aggregation.

Acknowledgement

I appreciate in first place my supervisor, Edson Antunes, for the wisdom and opportunity to be part of this project, the PhD student Camila Mendes and the M.Sci student Paulo Bueno for knowledge and patience and to SAE/UNICAMP for the financial support.


2.