Characterization of MOS and 3D Transistors produced at the Center of
Semiconductor Components – CCS/UNICAMP.

Iago Alberto Pereira Lopes (IC), Leandro Tiago Manera (PQ), Alessandra Leonhardt (PG)

Abstract
In this work electrical characterization of MOS devices through I-V and C-V curves are presented. MOS transistors were produced by conventional photolithography at CCS/Unicamp. 3D transistors using focused ion beam technique were also fabricated.

Key words: Transistors, FinFET, MOS

Introduction
In this work the extraction of some parameters in MOS devices, like threshold voltage, subthreshold slope, source drain resistance, cut off current, Early voltage and transconductance, will be presented.

From the extracted parameters, the influence of scaling and different manufacturing process will be studied.

Results and Discussion
Many parameters were extracted for nMOS and pMOS devices. Some extracted parameters definitions and results were:

• Threshold voltage: It was obtained through a linear extrapolation in the curve Id x Vgs in the maximum transconductance point1. The obtained Vt value was 2.23V.
• Early voltage: It is the non-ideality of transistors in the saturation region2. Devices has presented a mean value of 1940 V
• Subthreshold slope: It is the variation in gate voltage that results in a decade increase in drain current. In MOS transistors in the subthreshold region, the current increases exponentially with the gate bias3. 80mV/decade was obtained for conventional MOS transistors.

Figure 1 presents the Vt curve and the transconductance curve gm (∂Id/∂Vgs)

3D transistors using focused ion beam technique were also fabricated. Figure 2 presents and image of a 3D device during fabrication.

Conclusions
The knowledge acquired during the fabrication of conventional MOS transistors has allowed the development of 3D transistor manufacturing processes. The characterization performed on MOS devices will serve as a basis for evaluating new 3D devices. A comparison between planar and FinFET4 technology will be performed and the short channel effects evaluated.

Acknowledgement
I would like to thank Professor Leandro T. Manera who gave me the opportunity to join the research and Alessandra Leonhardt for helping me and teaching all about parameter extraction.

I would like to acknowledge the financial support from the CNPq and CCS/UNICAMP for the infrastructure.