Geochemistry of chemical sediments from Piumhi greenstone belt - MG

Gabriel S. dos Santos (IC)

Abstract
The paleochemistry and redox evolution of Earth’s oceans has long been debated in the literature. REE+Y composition of chemical sediments provides a record of those conditions. This work identifies anomalies indicative of an oxygenated hydrosphere influenced by hydrothermal processes, with iron formation (IF) deposition roughly at the redoxcline of a stratified ocean basin.

Key words: Geochemistry, REE+Y systematics, palaoenvironment

Introduction
Trace element systematics in marine sedimentary rocks provides a powerful tool to investigate the process controlling seawater geochemistry. Rocks like cherts and iron formations provide a record of seawater composition in the time of their precipitation, offering unique information about the history of geochemical change in Earth’s oceans. REE+Y patterns are particularly useful as proxies for geochemical conditions and mechanisms for IF deposition.

Results and Discussion
In this study, 15 samples of cherts and iron formations were collected in the Piumhi greenstone belt. Major elements were determined by XRF, and trace elements by ICP-MS. Due to analytical problems, the 4 chert samples collected could not be used. One sample was excluded from interpretation based on high Th, Zr and erratic post-Archean shale standard (PASS) normalized REE+Y pattern.

Image 1. PAAS normalized REE+Y pattern from IF samples.

Chart 1. REE+Y anomalies from IF samples.

Conclusions
The described REE+Y anomalies are consistent with an oxidizing environment, influenced by hydrothermal fluxes. The observed patterns are very similar to the proposed by Planavsky et. al. (2010) to late Paleoproterozoic basins, at a depth corresponding to the redoxcline of a stratified ocean basin.

Acknowledgement
The author wishes to acknowledge Elson Paiva de Oliveira and CNPq for sponsoring the research.
