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ABSTRACT

Optical remote sensors are extremely susceptible to clouds.
Clouds and their shadows affect remote sensing image
processing methods to automatically identify and classify
land use and land cover types. To detect cloud and cloud
shadows in remote sensing images, many algorithms have
been proposed, such as FMask, Sen2Cor and s2cloudless. In
image time series analysis, interpolation techniques are used
to produce valid values when pixels are covered by clouds
or shadows. This paper evaluates the use of deep learning
approaches to interpolate cloudy pixels in Sentinel-2 time
series. Twelve different model configurations were evaluated
and their differences and limitations were highlighted. The
model proved to be very promising in dealing with the
limitations of the cloud mask interpolating clouds and cloud
shadows.

Key words – Cloud interpolation, Satellite image time
series, Cloud and shadows, Neural network, Multilayer
perceptrons.

1. INTRODUCTION

Passive sensors, such as the Multi-Spectral Instrument (MSI)
onboard Sentinel-2, are extremely susceptible to clouds.
Even with this highly temporal recurrence, around five days
considering both satellites [1], clouds affect the ability to
identify land covers, decreasing the accuracy of surface
parameters as they interfere in the solar and terrestrial
radiation [2, 3].

In Brazil, due to its continental proportion, the cloud cover
follows an irregular temporal and spatial distribution. For
instance, the Pampa biome presents a constant number of
clear imagery regions throughout the year. At the same
time, the Amazon suffers from a lack of clear images,
more frequently available during the dry season but not too
successfully in the Northwest of the biome [4].

Most optical imagery already uses cloud detection
algorithms to correct the radiance, indicate cloudy areas,
and indirectly help users work properly with remote sensing
imagery. In this sense, we can point out the Fmask [5]
used in the Landsat collection; Sen2Cor [6] used by the
European Space Agency (ESA) in their Sentinel-2 satellite
products, and; s2cloudless [7] used by the Sentinel Hub’s in
its derivation products from known satellites.

However, those techniques can overestimate cloud areas
harming temporal analyzes. A study performed by Sanchez
et al. (2020) [8] in the Amazon tropical forest shows that
using the FMask 4 in Sentinel-2 images results in an overall
accuracy greater (90%) than the regular Sen2Cor (79%).

While Coluzzi et al. (2018) [3] shows that globally the
Sentinel-2 cloud mask underdetect systematically, reaching
a maximum difference (70%) in the Amazon basin.

In analyses that use temporal information, such as
deforestation, forest degradation, and phenology, the lack
of valid data due to cloud periods is crucial, making the
interpolation technique required. There are many available
methods to interpolate time series, since more simple such as
nearest-neighbor interpolation, until stochastic methods, such
as machine learning methods [9].

In this sense, this paper aims to verify if the use of deep
learning is capable to improve visually and temporally the
values of an image without the use of a cloud mask, and
adopting all-time series as input.

2. MATERIAL AND METHODS

We use the Sentinel-2 images from the Brazil
Data Cube (BDC) project. The project generates
multidimensional analysis-ready data cubes. We use
S2-SEN2COR_10_16D_STK-1 product that contains MSI
surface reflectance at full spatial resolution (10m) and 16
days Temporal Compositing considering the SCL cloud
mask. The temporal composite is generated from the images
with less clouds over the 16 days [10, 11].

The Multilayer perceptrons (MLP) was chosen to test a
new interpolate approach. This method is a feedforward
neural network that indicates that the information flows
through layers always forward until it approximates to
the determined function and finally reaches the output
[12]. The MLP implementation used is from the
scikit-learn MLPRegressor library [13].

Figure 1: The methodological scheme used in this study, with
the main tasks: 1-random points generation; 2-extraction of the
time series; 3-linear interpolation; 4-training the MLP model;

5-predicting the cloud-free values for a year of images.
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The methodology follows five main steps, as shown in
Figure 1. First, we collected 102 random patches across
Brazilian territory, selecting areas that encompass each
class of clouds following the Sentinel cloud mask (Scene
Classification Layer - SCL). Each patch has a 500 x 500 pixels
size, encompassing 250,000 time series, which will represent
a total of 25,500,000 samples.

Secondly, we extract the time series of one year (01-01-
2019 to 12-31-2019) from the Sentinel-2 data cube, including
three bands (B04-Red, B08-Nir, B11-Swir). Next, those
time series were interpolated using the interp function
by the numpy library [14], based on the classes "No data",
"Saturated or defective", "Dark areas", "Cloud shadow",
"Cloud medium probability", "Cloud high probability", "Thin
cirrus" and "Snow" contained in the SCL mask. Later, those
time series were used to train the MLP model, and then the
model was applied in different areas with different cloud
cover structures and land use and land cover patterns.

The strategy of this paper is to interpolate the time series
without using a cloud mask. In this sense, the model input
consisted of two-dimensional arrays. The first dimension is
the number of samples, and the second is the time resolution
of the time series, resulting in an output with the same time
dimension as the input.

Two hidden layers were defined with six variations in the
number of neurons: [8,4], [16,8], [32,16], [64,32], [128,64],
and [256,128], where the first value is the number of neurons
in the first layer and the second value is the number of neurons
in the second layer.

Another configuration used is related to the total training
samples. From the 25,500,000 random time series extracted
for the whole Brazilian territory, we set two different
networks, one with a step size of 10 pixels and another with a
step size of 100 pixels, summarizing 2,550,000 and 255,000
time series, respectively. The activation function used was
relu with the solver adam, the alpha was set to equal
to 0.001, batch size to 1000, learning rate init to
0.001, validation fraction of 20%, and the other parameters as
default.

We use two methods to validate the deep-learning
approach. First, a visual procedure was applied, this method
consist in to indicate if the patterns, texture, and features were
modified, and all those features were indicated by a specialist.

The second procedure was to check if the physical value
(superficial reflectance) changes at the point to invalidate the
intrinsic characteristic of the object. We collect random points
and compare our approach with linear interpolation. The root
mean squared error (RMSE), the mean squared error (MSE),
and the mean absolute error (MAE) were used to check the
divergences between both approaches.

3. RESULTS

Figure 2 shows the application of the 12 models for one
pixel of the NIR band along with the raw time series and the
linear interpolated time series based on the cloud mask. The
gray highlighted background represents the pixels identified
as clouds and needs interpolation.

The gain between the two sets of samples (255,000;

2,550,000) is not too large as compared to the number of
neurons in each layer. In this sense, we notice that for the
model with fewer neurons, like the 8_4, 16_8, and 32_16,
the time series gets more flat, losing all the variation. While
layers with more numbers of neurons, such as 64_32, 128_64,
and 256_128 are more similar to the linear interpolation.

Figure 2: Result for the six models of each training set,
comparing it to the linear interpolation and the raw data. The

bars represent the cloud class extract from the SCL band.

Table 1 shows the reference values for each model with
their respective MSE, RMSE, and MAE values calculated
using linear interpolation as a baseline.

Model S255,000 S2,550,000
configuration MSE RMSE MAE MSE RMSE MAE
8_4 0.0121 0.1100 0.0866 0.0100 0.1000 0.074
16_8 0.0100 0.1000 0.0758 0.0038 0.0616 0.0526
32_16 0.0049 0.0701 0.0577 0.0480 0.0694 0.0461
64_32 0.0038 0.062 0.0431 0.004 0.0629 0.0426
128_64 0.0014 0.0374 0.0281 0.0022 0.0466 0.0299
256_128 0.0026 0.0510 0.0335 0.0007 0.0258 0.0177

Table 1: Metrics comparing the six models of each training set
with linear interpolation.

Figure 3 shows two scenarios of cloud cover selected. In
the first, there is the presence of Cirrus clouds and large
shadows, indicated by the red and blue polygons. While in the
second, there are dense clouds and well-defined shadows. In
the baseline section, the raw image and the linear interpolated
method result are displaced.

To track the visual efficiency generated by the MLP
method, we distribute the images by the number of samples
(column) and the number of neurons (lines).

The image reconstructions show a higher variance between
the 12 results from the MLP model. Visually the low number
of neurons highlighted the features more than the linear
interpolations, increasing the contrast and the visual acuity.

However, the cloud’s shadow is a persistent artifact in
the MLP model, mainly in the model set up with more
neurons. From 32_16 the cloud’s shadows start to appear as
an artifact of the MLP, presents only in the 2,550,000 sample
set. After this point, the presence of cloud artifacts was more
present, including the insertion of bare soil in the middle of
an agricultural area.
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Figure 3: Visual comparison between the original image (Raw),
the linear interpolated, and the MLP results. The column shows
the results with the different numbers of samples, and the lines
show the variation of neurons in each layer. Composite Color

Image: Red-B04, Nir-B08 e Swir-B11.

4. DISCUSSION

Table 1 shows a small error, with some configurations
performing better quantitatively. Looking at Figure 3, we
can observe some characteristics of each model. The models
with fewer neurons were smoother and removed most of the
temporal breaks. This characteristic is also evident when we
reconstruct the image, as in Figure 3. The configurations with
fewer neurons removed both the cloud and shadow influence.
However, as a result, the temporal variability of use and
coverage was lost. At the same time, the other images showed
little variability, tending to remove, for example, the crop
rotation.

The models with more neurons behaved more like linear
interpolation. As a result, where the cloud mask has more
errors, the model also "learned" the same errors, making

it very difficult to interpolate cloud shadows. Although, it
can even interpolate some types of clouds well, with the
advantage of preserving some temporal variability in the other
images.

The Linear Interpolation (LI) uses the SCL cloud mask to
orientate where the algorithm should be interpolated. In this
sense, in places where the mask made a misclassification, the
pixel still shows the influence of the cloud. In those areas, the
imagery presents a very characteristic cloud noise.

As pointed out by some authors [3, 8], the SCL mask
underdetect systematically clouds. Thus, even with the best
method of filling a gap, the fact of needing the mask as a
guide still makes remains noisy in the images.

There are some deep-learning approaches to dealing with
clouds. However, they are more interested in indicating where
they are and passing the users the process to fill the gap.
This is the case of the S2cloudless [7]. However, even this
algorithm uses a cloud mask as training data.

Depending on the number of neurons used in each layer, the
MLP model resembles linear interpolation. However, in those
scenarios, the model shows difficulties in dealing with cloud
shadow, not smoothing the valley as visible in the models with
fewer neurons.

The size and quality of the samples are very important in
machine learning applications [7, 15]. The two sets did not
disagree too much visually and physically in our approach.

5. CONCLUSIONS

Optical remote sensors are extremely susceptible to clouds,
leaving it up to the user to remove them and deal with possible
failures. The use of deep-learning models brings an advantage
because, simultaneously, the presence of clouds is removed,
and the data are already interpolated and smoothed, two
essential steps usually performed when working with time
series.

Our study shows that the Multilayer perceptron (MLP)
has great potential to perform the basics process leaving the
image ready to use in time series as pixel data or imagery
composition. However, the choice of the number of neurons
must be considered since, when reducing this parameter to
remove more cloud artifacts, the final interpolation excludes
significant variations of features, such as wetlands, crop
rotation, and vegetation growth.

This study was limited to comparing, at the first moment,
the MLP model as an alternative to the linear interpolation
technique. Further studies need to be developed to check
the factual accuracy of the interpolation, the depth of the
model more suitable considering all Brazilian territory, and
its potential use to rebuild a cloud mask.

In future work, we intend to use visual interpretation, not
the SCL cloud mask, to identify clouds and shadows in the
random time series used to train the MLP method. Thus, we
will be able to evaluate the deep learning approach regardless
of the SCL cloud mask errors.

Acknowledgment

We would like to thank the Brazil Data Cube project,
which is part of the “Environmental Monitoring of Brazilian

https://proceedings.science/p/164837?lang=pt-br 3020

https://proceedings.science/p/164837?lang=pt-br


Biomes project”, funded by the Amazon Fund through the
financial collaboration of the Brazilian Development Bank
(BNDES) and the Foundation for Science, Technology and
Space Applications (FUNCATE) no. 17.2.0536.1; and to
the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior – Brasil (CAPES) - Finance Code 001, for the Silva,
B.L.C. scholarship.

6. REFERENCES

[1] ESA. Sentinel-2, 2022.

[2] John R. Jensen and José Carlos Neves Epiphanio.
Sensoriamento remoto do ambiente: uma perspectiva em
recursos terrestres. Parêntese, São José dos Campos, SP, 2011.

[3] Rosa Coluzzi, Vito Imbrenda, Maria Lanfredi, and Tiziana
Simoniello. A first assessment of the sentinel-2 level 1-c cloud
mask product to support informed surface analyses. Remote
Sensing of Environment, 217:426–443, 2018.

[4] Jean Francois Mas, Carlos Henrique Sopchaki, Francisco Davy
Braz Rabelo, Francisca Soares de Araújo, and Jonathan Vidal
Solórzano. Análise da disponibilidade de imagens landsat e
sentinel para o brasil. Geografia Ensino & Pesquisa, 24, dez.
2020.

[5] Shi Qiu, Zhe Zhu, and Binbin He. Fmask 4.0: Improved
cloud and cloud shadow detection in landsats 4–8 and sentinel-
2 imagery. Remote Sensing of Environment, 231:111205, 2019.

[6] Jérôme Louis, Vincent Debaecker, Bringfried Pflug,
Magdalena Main-Knorn, Jakub Bieniarz, Uwe Mueller-
Wilm, Enrico Cadau, and Ferran Gascon. Sentinel-2 sen2cor:
L2a processor for users. In L. Ouwehand, editor, ESA Living
Planet Symposium 2016, volume SP-740 of ESA Special
Publications, pages 1–8. Spacebooks Online, August 2016.

[7] SentinelHub. Cloud masks and cloud probabilities, 2022.

[8] Alber Hamersson Sanchez, Michelle Cristina A. Picoli,
Gilberto Camara, Pedro R. Andrade, Michel Eustaquio D.
Chaves, Sarah Lechler, Anderson R. Soares, Rennan F. B.
Marujo, Rolf Ezequiel O. Simões, Karine R. Ferreira, and
Gilberto R. Queiroz. Comparison of cloud cover detection

algorithms on sentinel–2 images of the amazon tropical forest.
Remote Sensing, 12(8):1284, Apr 2020.

[9] Mathieu Lepot, Jean-Baptiste Aubin, and François H.L.R.
Clemens. Interpolation in time series: An introductive
overview of existing methods, their performance criteria and
uncertainty assessment. Water, 9(10), 2017.

[10] Karine R. Ferreira, Gilberto R. Queiroz, Lubia Vinhas,
Rennan F. B. Marujo, Rolf E. O. Simoes, Michelle C. A.
Picoli, Gilberto Camara, Ricardo Cartaxo, Vitor C. F. Gomes,
Lorena A. Santos, Alber H. Sanchez, Jeferson S. Arcanjo,
José Guilherme Fronza, Carlos Alberto Noronha, Raphael W.
Costa, Matheus C. Zaglia, Fabiana Zioti, Thales S. Korting,
Anderson R. Soares, Michel E. D. Chaves, and Leila
M. G. Fonseca. Earth observation data cubes for brazil:
Requirements, methodology and products. Remote Sensing,
12(24), 2020.

[11] BDC. Brazil data cube - cubo de dados, 2022.

[12] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. MIT Press, 2016. http://www.
deeplearningbook.org.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[14] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith,
Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del
Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,
Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer
Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–362,
September 2020.

[15] Aaron E. Maxwell, Timothy A. Warner, and Fang Fang.
Implementation of machine-learning classification in remote
sensing: an applied review. International Journal of Remote
Sensing, 39(9):2784–2817, 2018.

https://proceedings.science/p/164837?lang=pt-br 3021
Powered by TCPDF (www.tcpdf.org)

https://proceedings.science/p/164837?lang=pt-br
http://www.tcpdf.org

