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Av. Trabalhador São-carlense, 400, 13560-970, São Carlos-SP, Brasil
caio.tomazella@usp.br

Maristela Oliveira Santos
Universidade de São Paulo - Instituto de Ciências Matemáticas e de Computação
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RESUMO
Este artigo aborda o problema de dimensionamento de lotes multi-estágio que integra

decisões de produção e compra de matérias-primas. Este problema pode ser encontrado em diferentes
indústrias onde os itens produzidos ou matérias-primas são perecı́veis, portanto devem ser utilizados
na produção ou entregues aos clientes antes de suas validades expirarem. Apesar da relevância deste
problema, há uma lacuna na literatura atual referente a métodos heurı́sticos para este problema.
Assim, este artigo propõe MIP-heurı́sticas do tipo relax-and-fix e fix-and-optimize que visam encontrar
boas soluções para o problema em intervalos de tempo curtos. São apresentadas decomposições
que exploram as relações entre produtos e fornecedores, e os resultados mostram que os melhores
algoritmos têm um desempenho similar ou, em alguns casos melhor, que a do solver. Também é
mostrado o impacto da perecibilidade nas soluções em termos de factibilidade e são dadas sugestões
de como o método pode ser aprimorado em pesquisas futuras.

PALAVRAS CHAVE. Dimensionamento de lotes. Seleção de fornecedores. Perecibilidade.
MIP-Heurı́stica.

ABSTRACT
This article addresses a multi-stage lot-sizing problem that integrates production and

raw material procurement decisions. Due to the fact that this problem is applicable to different
industries, in several cases the items involved in the supply chain are perishable, and must be
either used in production or delivered to the customers before their self-lives are expired. Despite
the relevance of this problem, there is a gap in the current literature since no heuristics were
yet proposed. Therefore, this article presents relax-and-fix and fix-and-optimize MIP-heuristics
with the objective to find good solutions for the problem in a short amount of time. We propose
decomposition schemes that explore the relationships between products and suppliers, and show
that our algorithms can match and, in some cases, surpass the performance of a commercial solver.
We also show how perishability impacts the performance of the heuristics in terms of feasibility and
suggest points in which the method can be improved for future research.
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1. Introduction
The Integrated Procurement and Lot-Sizing Problem (IPLSP) has been widely addressed

in the literature, due to its relevance in industrial applications [Crama et al., 2004; Mohammadi,
2020; Acevedo-Ojeda and Chen, 2020]. Some of the studies in this field show that the integrated
approach provides more cost-efficient solutions than solving both problems separately, since it takes
advantage of the inter-dependency of the decisions and reduce costs mostly on the operations related
to raw material procurement, which accounts for the majority of the costs incurred in this problem
[Cunha et al., 2018; Tomazella et al., 2020].

Supply chain problems that deal with perishable problems are found in several industries,
such as food, blood banks and even electronics [Coelho and Laporte, 2014]. Chen et al. [2019]
defined four different forms that perishability can be incorporated in a problem: imposing shelf-life
constraints; establishing a make-to-order production strategy; using age-dependent holding costs;
and measuring the inventory freshness degree. For more in-depth definitions, the reader is referred
to these papers.

Perishability is mostly found in the lot-sizing literature in the form of shelf-life constraints,
in which items must not be kept in inventory for more than a set number of time periods. Coelho
and Laporte [2014] discuss that these constraints are fit for cases in which products are no longer
fit for consumption (eg. dairy products and drugs with expiration dates) and products that become
obsolete (eg. calendars and electronics).

On the IPLSP literature, Amorim et al. [2016] modeled a food supply chain with shelf-life
constraints for all items. In their case, product demand depended on the age of the inventory at hand.
Wei et al. [2019] imposed shelf-life constraints for both products and raw materials in a lot-sizing
and scheduling problem with a multi-level production structure. Tomazella et al. [2020] considered
age-dependent holding costs, in which items got more expensive to be kept in inventory as they
aged, enforcing a First In Frist Out (FIFO) consumption policy. Lastly, Acevedo-Ojeda and Chen
[2020] modeled raw material perishability in the form of shelf-life constraints, item deterioration
and disposal in an advanced composite industry.

In this article, we address the IPLSP with multi-level production and supplier selection,
in which both products and raw material have shelf-life constraints. We present a Mixed-Integer
Programming (MIP) formulation that allow us to keep track of inventory age, and therefore can be
applied to different types of item perishability and inventory aging effects. Moreover, we propose
heuristics based in the decomposition of the MIP formulation (MIP-heuristics), that is, relax-and-fix
and fix-and-optimize heuristics to solve large-size instances.

The motivation behind this article is that, even though several articles have proposed
models for variations of the IPLSP, to the best of our knowledge, no studies on the efficiency of
different formulations or on heuristic methods for the IPLSP were published. This research follows
the article from Tomazella et al. [2020], who suggested the proposal of a heuristic in order to solve
large-size instances of the IPLSP. Here we approach a simplified variation of their problem, in
which quantity discounts, procurement budget and some production aspects such as provisioning
lead-times and set-up carry-overs are not considered. However, the same formulation used to model
perishability is used.

This article is structured as follows: in Section 2 we define the IPLSP and present its MIP
formulation; in Section 3 we propose MIP-Heuristics for the IPLSP based on the relax-and-fix and
fix-and-optimize procedures; Section 4 consists of the computational experimentation details and
a results analysis; Section 5 summarizes the findings of this article and suggests ideas for future
research.



2. Problem Description and Mixed-Integer Programming Formulation

In a multi-level production structure, products that have only external demand are called
end products, while those that also have an internal demand incurred from their use for in-house
production are called intermediate products. The production processes also consume raw materials,
which can be purchased from multiple third party suppliers. Fore a more detailed definition of the
big-bucket multi-level lot-sizing problem, the reader is referred to Akartunali and Miller [2009]
and Wu et al. [2011], while for the supplier selection problem, to Basnet and Leung [2005] and
Cárdenas-Barrón et al. [2021].

In the problem, external demand exists for both end and intermediate products, which
must be fulfilled entirely, without backlogging or lost sales. Regarding the lot-sizing problem,
we assume sequence-independent setups, zero initial inventory and no provisioning lead-times,
therefore an intermediate product can be used in the same period that it is produced. Machines
have a limited capacity, which can be extended by overtime hours. As for the procurement problem,
raw materials can be purchase from multiple suppliers, and are available to be used in the same
periods they are delivered.

Both products and raw materials have limited shelf-lives, which are given in periods.
Whenever a product (raw material) is produced (purchased), it is either consumed or stored in
inventory with age 1. For each period it is kept in inventory, the age increases until the item
reaches its shelf-life, a point in which it must be consumed or it must be discarded. In case of
the latter, the item is taken out of inventory and is no longer available for use, with no extra costs
incurred. It should be noticed that in this problem that are no conditions that lead to having surplus
inventory (i.e., quantity discounts, minimum lot sizes), so an optimal solution will not have items
being discarded. We also consider that the inventory age does not affect the production process, and
the shelf-life of a product is also not affected by the age of the inputs used in production.

In order to describe the IPLSP in detail, we present a Mixed-Integer Programming (MIP)
model for the problem. Tables 1, 2 and 3 contain the notation used through this entire article. This
formulation is based on the multi-level lot-sizing formulation from Akartunali and Miller [2009] and
the supplier selection formulation from Basnet and Leung [2005]. Perishability is modeled using
inventory variables that carry an index representing the inventory age, as introduced by Coelho and
Laporte [2014].

Table 1: Sets and indices of the model
J Set of products, indexed by i, j
F Set of raw materials, indexed by f
T Set of periods, indexed by t
M Set of machines, indexed by m
S Set of suppliers, indexed by s
g Index referring to inventory age
S(j(f)) Set of products that use product (raw material) j (f ) in their production
K(m) Set of products assigned for production in machine m
F(f) Set of suppliers that sell raw material f

Objective Function 1 is the sum of the costs associated with the problem, which is minimized.
These costs are, in the order that they appear: production, raw material purchasing costs; product
and raw material holding costs; machine setup and overtime costs; supplier ordering costs.



Table 2: Parameters of the IPLSP used in the model
Products

pjt Production cost of product j in period t
ptjt Production time of product j in period t
sjt Setup cost of product j in period t
stjt Setup time of product j in period t
hjt Holding cost of product j in period t
cmt Capacity of machine m in period t
otcmt Overtime cost of machine m in period t
aij Units of product i used in the production of an unit of product j
djt Demand of product j in period t

Raw Material
pfst Cost of purchasing raw material f from supplier s in period t
δfs Parameter with value 1 if raw material f is sold by supplier s, 0 otherwise
hft Holding cost of raw material f in period t
afj Units of raw material f used in the production of an unit of product j
ost Cost of ordering from supplier s in period t

Table 3: Variables of the MIP formulation for the IPLSP
Xjt Units of product j produced in period t
Igjt Inventory of product j with age g at the end of period t
W g

jt Units of product j with age g used to fulfill external and internal demand in period t
Qfst Units of raw material f purchased from supplier s in period t
Igft Inventory of raw material f with age g at the end of period t
W g

ft Units of raw material f with age g used to fulfill internal demand in period t
Omt Overtime of machine m in period t
Yjt 1 if setup for product j occurs in period t, 0 otherwise
Sst 1 if a purchase is made from supplier s in period t, 0 otherwise

min
∑
j

∑
t

pjt ·Xjt +
∑
f

∑
s

∑
t

pfst ·Qfst+

∑
j

∑
t

vj∑
g=1

hjt · Igjt +
∑
f

∑
t

vf∑
g=1

hft · Igft+∑
j

∑
t

sjt · Yjt +
∑
m

∑
t

otcmt ·Omt +
∑
s

∑
t

ost · Sst

(1)

Constraints (2)-(5) model the inventory flow of the products while keeping track of inventory
age. Constraints (2) maintain the inventory balance throughout the periods. Constraints (3) set that
the amount produced in a period that is not immediately used (for production or demand fulfillment)
goes to inventory with age 1, while Constraints (4) guarantee that existing inventory that is not used
in to be carried to the following period as long as it remains within its shelf-life. Constraints (5)
than guarantee that both internal and external demands are fulfilled. A product perishes when it
reaches an inventory age of g = vj + 1, therefore it is neither considered in the inventory flow, in



Constraints (2), nor used for demand fulfillment, in Constraints (5).
Constraints (6) enforce the occurrence of machine setup whenever there is production. For

these constraints, we use Djt as a BIG-M, which is the accumulated echelon demand of product j
from period t onwards, calculated usingDjt = sum

|T |
t′=t

(
djt′+

∑
i∈S(j) (aij ·Dit)

)
. Constraints (7)

limit the time a machine spend on production and setup operations to its capacity, allowing overtime
hours to be added at a penalty that it is high enough so it is the least preferable option to be used.

vj∑
g=1

Igj(t−1) +Xjt =

vj∑
g=0

W g
jt +

vj∑
g=1

Igjt ∀j, t (2)

Xjt =W 0
jt + I1jt ∀j, t (3)

Igj(t−1) =W g
jt + Ig+1

jt ∀j, t, 1 ≤ g ≤ vj (4)
vj∑
g=0

W g
jt =

∑
i∈S(j)

(aij ·Xjt) + djt ∀j, t (5)

Xjt ≤ Djt · Yjt ∀j, t (6)∑
j∈K(m)

(ptjt ·Xjt + stjt · Yjt) ≤ cmt +Omt ∀m, t (7)

Raw material inventory flow is modeled using Constraints (8)-(11), which are analogous
to Constraints (2)-(5). Constraints (12) enforce that an order is placed for a supplier if any raw
material is purchased from it, and uses Dft =

∑
i∈S(f) (aif ·Dit). When raw material f is not sold

by supplier s, δfs is equal to zero, which automatically forces Qfst = 0.

vf∑
g=1

Igf(t−1) +
∑
s

Qfst =

vf∑
g=0

W g
ft +

vf∑
g=1

Igft ∀f, t (8)

∑
s

Qfst =W 0
ft + I1ft ∀f, t (9)

Igf(t−1) =W g
ft + Ig+1

ft ∀f, t, 1 ≤ g ≤ vf (10)
vf∑
g=0

W g
ft =

∑
i∈S(f)

(aif ·Xft) ∀f, t (11)

Qfst ≤ δfs ·Dft · Sst ∀f, s, t (12)

Finally, Constraints (13)-(14) define the domain of the variables.

Xjt, I
g
jt,W

g
jt, Qfst, I

g
ft,W

g
ft, Omt ≥ 0 ∀j, f, t,m, s, g (13)

Yjt, Sst ∈ {0, 1} ∀j, t, s (14)

3. MIP-Heuristic Algorithms
3.1. Relax-and-Fix

The relax-and-fix procedure is widely used in the lot-sizing literature to generate solutions
for problems, which also serve as a starting point for other algorithms [Stadtler, 2003; Akartunali



and Miller, 2009; Baldo et al., 2014]. This heuristic divides the binary variables of the problem
into three groups: fixed, optimized and relaxed. Initially, all variables are linearly relaxed. Than
the domain of a subset of variables is restored to binary so they can be optimized; after the model
is solved, all or some (in case there is overlapping) variables in optimized are fixed to the values
found. These steps are repeated until all binary variables have been optimized.

RFT (w, y) heuristic
We first propose a time-based decomposition that constructs a solution starting from the

first period and moving forward, and is defined by two parameters, the window size (w) and the
overlap (y). Using our nomenclature, w is the amount of periods being optimized, while y is the
number of periods that are re-optimized in the following iteration, which means that the variables
of the remaining w − y periods are fixed.

In order to illustrate the procedure, we show an example with (w, y) = (2, 1). At first
the variables in periods t = 1, 2 are optimized; then the model is solved and the variables in period
t = 1 are fixed; in the second iteration, periods t = 2, 3 are optimized and the variables in t = 2 are
fixed. It should be noticed that in this example overlapping occurs in all variables from period t = 2.
The pseudocode of the relax-and-fix heuristic, which we call RFT (w, y), is shown in Algorithm 1.

Define model MIP as in Section 2
Relax all Yjt and Sst variables
Define window (w) and overlap (y)
Define step: s = w − y
Define t1 = 1 and t2 = w
while t2 ≤ |T | do

Set the domain of variables Yjt and Sst with t1 ≤ t ≤ t2 to binary
Solve MIP
Fix variables Yjt and Sst with t1 ≤ t ≤ t1 + s to the values found
t1 = t1 + s
t2 = t2 + s
if t2 > |T | then

t2 = |T |
t1 = |T | − w

end
end

Algorithm 1: Psudocode of heuristic RFT (w, y).

RFPS and RFSP heuristics
We also propose two stage-based decomposition schemes to test if this approach yields

better results than the traditional time-based heuristics. These heuristics decompose the problem
into |J | subsets, each one containing all Yjt variables for a product along the entire planning
horizon, and a single subset containing all Sst variables. Heuristic RFPS solves first the products
subproblems in sequence, followed by the supplier selection subproblem, while RFSP does the
opposite, fixing the Sst variables first. It should be noticed that after each solve, all optimized
variables are fixed and there is no overlap. Contrary to the time-based decomposition, this approach
is less integrated in the sense that the Yjt and Sst variables are optimized separately.

RFT (w, y) has a natural order to which each subset is solved (starting from the first period
onwards). For RFPS and RFSP , we use the product order proposed by Helber and Sahling [2010]:
(1) solve the linear relaxation of the MIP; (2) calculate the costs associated with each product



(production, inventory, setup and overtime); (3) arrange the products in non-increasing order of
the associated costs. For a more detailed explanation of this ordering, the reader is referred to the
original article.

3.2. Fix-and-Optimize
The fix-and-optimize heuristic is an improvement MIP-based procedure, which main

principal is solving smaller subsets of the MIP in sequence. This procedure is found to be used
in several ways, such as a stand-alone method [Helber and Sahling, 2010], applied in conjunction
with the relax-and-fix heuristic [Baldo et al., 2014; Toledo et al., 2015] and in conjunction with other
heuristic and metaheuristic concepts [James and Almada-Lobo, 2011; Furlan and Santos, 2017].

The variables are assigned into different subsets (Nk) according to a decomposition scheme.
Initially all variables are fixed, which gives an initial feasible solution. Than each subset is optimized
in sequence, which gives a solution that is at least as good as the initial one. After all subsets are
optimized, the algorithm can either (i) stop in case no improvement on the initial solution is found
or (ii) repeat the optimization process otherwise. Algorithm 2 describes the steps of a generalized
fix-and-optimize heuristic procedure.

Define an initial solution for model MIP
Define and arrange the K variable subsets N1,N2, . . . ,NK

repeat
for 1 ≤ k ≤ K do

Release variables in Nk for optimization
Solve MIP
Fix variables in Nk to the values found

end
until no improvement in the solution is found;

Algorithm 2: Fix-and-optimize algorithm
We propose three different decomposition schemes for the IPLSP, highlighting that these

aim at optimizing both lot-sizing and supplier selection variables in an integrated manner.

• Period decomposition (FOT ): corresponds to the all binary variables within a range of
periods. This decomposition also uses the w and y parameters.

• Product decomposition (FP ): corresponds to the setup variables of a product and the order
variables related to the suppliers which sell the raw materials used in its production.

• Process decomposition (FOPR): an extension of the product decomposition, which also
considers the setup variables of the intermediate products used in its production.

Since in FOP and FOPR each subset is tied to a product j, the ordering given to the
subsets in both decomposition schemes is the same used in the RFPS and RFSP procedures.

4. Computational Experiments and Results
The models and heuristics presented in this article were implemented in Python 3.6.9, and

all models were solved using Gurobi 9.0 with its default parameters. The experiments were done in
a computer with an Intel Core i7-2600 processor at 3.40GHz and 16GB RAM.

For the experimentation we used a database of 64 instances, consisting of multi-stage lot-
sizing instances of the New Invented Data from Tempelmeier and Buschkühl [2009] with newly



generated data for the supplier selection parameters. Table 4 summarizes the main parameters of
the instances.

The lot-sizing instances are the following (using the nomenclature given by the author):
Classes 4 and 6; Assembly and General product structures; demand, capacity and setup profiles 1.
Production costs are set to pjt = 1 and the original setup costs are multiplied by 100. The supplier
selection data was generated as follows: two raw material profiles for each Class, consisting of
different numbers of raw materials; the holding costs of each material were set to hft = 1, and
the holding costs of the products were updated accordingly; a number of suppliers was set for each
Class, and the materials were assigned so that each material was sold by three different suppliers;
the raw material purchasing costs (pfst) were generated using uniform distribution in the [20, 50]
range, and the supplier order costs (ost) in the [1000, 2000] and [10000, 12000] ranges. These ranges
were based on the supplier selection instances used by Cárdenas-Barrón et al. [2021].

Four perishability scenarios are considered, in which vj (vf ) is common for all products
(raw materials): (vj , vf ) = (2, 2), (2, 5), (5, 2), (5, 5).

Table 4: Characteristics of the instances.
Class Periods Products Machines Suppliers Raw Materials

4a 16 20 6 6 12
4b 16 20 6 6 24
6a 16 40 6 12 24
6b 16 40 6 12 48

4.1. MIP Formulation Results
We first solve the MIP formulation presented in Section 2 in order to obtain upper and

lower bounds that serve as a benchmark for the FO heuristic. A time limit of 3600s was given for
each instance. Table 5 summarizes the results, showing the number of optimal solutions found, the
number of solutions with machine overtime, the optimality gaps and elapsed time. The optimality
gap is automatically given by Gurobi, and is calculated using GAP = (UB − LB)/LB (UB
being the value of the incumbent solution and LB the value of the lower bound at the end of the
execution). Overall, no optimal solutions were found for any of the instances in Classes 4 and
6, with the average gaps being 2.50% and 2.79%, respectively. None of the incumbent solutions
have machine overtime, which shows that all instances would be feasible even if overtime was not
allowed.

Table 5: Results obtained by solving the MIP formulation.
Gap

Class Average Minimum Maximum Time (s)
4a 1.92% 0.56% 4.43% 3600
4b 3.08% 1.03% 6.14% 3600
6a 1.79% 1.12% 2.45% 3600
6b 3.80% 2.13% 6.28% 3600

4.2. Heuristics Results
In the first of the experimentation, we analyse the results of the relax-and-fix heuristic as a

solution method. Let RFT (w, y) be the relax-and-fix using the time-based decomposition with set



w and y parameters. In each procedure, the execution time for each iteration is limited to 3600/k
seconds, with k = d(|T | − w)/(w − y)e+ 1, as proposed by James and Almada-Lobo [2011]. For
RFPS and RFSP , we have k = |J |+ 1, which is the number of iterations.

Table 6 summarizes the results obtained with the relax-and-fix heuristics. We observe that
larger optimization windows w and overlaps y provide better solutions, although at the expense of
a significant increase in computational time. This trade-off is especially clear in the instances from
Set 6, in which the average computational time of RFT (3, 2) is approximately 20 minutes. We
suggest, based on the results obtained with the fix-and-optimized heuristics, that RFT is better used
with shorter windows in order to generate an initial solution rather than as a isolated method.

Both item-based decomposition heuristics,RFPS andRFSP , showed a poor performance
both in terms of solution quality, comparable to the worst cases of RFT (w, y) and, in the case of
RFSP , in terms of computational time. We observe that these decomposition schemes do not take
advantage of the relationships between variables of different products and suppliers, which leads
to non-optimal solutions. As discussed in the introduction, solving the problem in an integrated
manner allows us to shape an internal demand profile for raw materials that takes advantage of
lower prices and fixed supplier costs. In this case, the shelf-life constraints also become a factor,
since they do not allow inventory to be kept for longer periods of time, creating the need of more
purchases and production setups, which incurring additional ordering costs and possibly, machine
overtime.

Table 6: Results of the relax-and-fix heuristics. Note: Imp: number of instances improved in comparison to
the MIP results.

Instance Set 4 Instance Set 6
Heuristic Imp Gap Time (s) Imp Gap Time (s)
RFT (1, 0) 0 4.99% 6.32 0 4.73% 21.17
RFT (2, 0) 0 4.58% 10.75 0 4.24% 159.39
RFT (2, 1) 0 4.04% 44.43 0 3.92% 216.29
RFT (3, 0) 0 3.61% 63.39 0 3.54% 731.43
RFT (3, 1) 1 3.26% 85.39 3 3.28% 911.76
RFT (3, 2) 1 3.17% 163.56 3 3.25% 1188.84
RFPS 0 4.42% 8.20 0 4.78% 59.56
RFSP 0 4.24% 571.69 0 4.35% 2406.58

The second experimentation analyses the results of the fix-and-optimize heuristics. As a
preliminary step, we have tested the heuristic (Algorithm 2) with the period decomposition using the
six combinations of (w, y) parameters from Table 6. We observed a similar trade-off between gap
and computational time, and opted to use (w, y) = (2, 1), which are also the same values suggested
by James and Almada-Lobo [2011].

We now test the fix-and-optimize heuristic using the decomposition schemes defined in
3.2. The algorithm starts with RFT (2, 1) in order to find an initial solution, then applies the
procedure described in Algorithm 2. The algorithm stops until no improvement is found or after the
time limit of 3600 second is reached. Seven combinations of the decomposition schemes are used:

• FO1: FT (2, 1)
• FO2: FP

• FO3: FPR

• FO4: FT (2, 1), FP



• FO5: FT (2, 1), FPR

• FO6: FP , FPR

• FO7: FT (2, 1), FP , FPR

Table 7 shows the results obtained with these heuristics. We first observe that the benefits
of using fix-and-optimize procedures is evident when comparing the gaps and computational times,
since FO1 with (w, y) = (2, 1) results in lower gaps and computational times than using the RFT

heuristic with w = 3. The number of fix-and-optimize iterations is also listed, showing that the
subsets are often optimized two or more times before a local minimum is found, reassuring the need
of multiple procedures.

The fix-and-optimize heuristics with better performance are those that employ the time-
based decomposition (FO1, FO4, FO5 and FO7), and that the addition of schemes FP and FPR

improves the results, although at a significant execution time increase.
When comparing to the MIP results, the best performing heuristics managed to find

better solutions in 30% to 40% of the instances. While the average gaps obtained with the heuristics
are higher than those obtained while solving the MIP for one hour, the computational times in
Table 7 show that they are viable methods for obtaining good solutions for the IPLSP: the FO(7)
heuristic, which took the longest times, had an average of less than 2.5 minutes with the instances
of Class 4 and less than 12 minutes with those of Class 6.

Overall, no heuristics exceeded the time limit of 3600 seconds, and the worst case was
under 2200 seconds. This indicates that the method can be improved by adding different different
decomposition schemes (deterministic or stochastic), which can eventually lead the heuristic to
consistently find better solutions than the solver within the same time frame.

During the experimentation we have noticed that these subsets take longer to be solved
to optimality, often reaching the set time limit. Therefore, we also suggest that this method can be
enhanced by, instead of optimizing all product/process variable subsets, we select those that are the
most promising in terms of reducing costs and machine overtime.

Table 7: Results of the fix-and-optimize heuristics. Note: Imp: number of instances improved in comparison
to the MIP results; Iter: average number of iterations done by the fix-and-optimize heuristics.

Instance Set 4 Instance Set 6
Method Imp Gap Time (s) Iter. Imp Gap Time (s) Iter.
MIP - 2.50% 3600.00 - - 2.79% 3600.00 -

RFT (2, 1) 0 4.04% 44.43 - 0 3.92% 216.29 -
FO1 8 2.76% 78.14 2.16 11 2.95% 460.99 2.97
FO2 1 3.34% 72.89 1.84 1 3.27% 426.71 1.91
FO3 4 2.99% 109.82 2.03 2 3.23% 475.04 1.75
FO4 8 2.69% 98.75 2.16 12 2.92% 520.57 2.09
FO5 11 2.63% 121.45 1.94 13 2.92% 553.16 2.00
FO6 4 3.01% 122.87 1.84 1 3.25% 603.29 1.41
FO7 12 2.61% 142.70 1.91 13 2.92% 679.68 1.94

The last discussion refers to the fact that the proposed methods can result in solutions with
machine overtime, which does not happen when solving the MIP formulation. Since overtime
hours have an associated cost that is high enough for them to be used as a last option to ensure
solution feasibility, the fact that heuristics end with positive overtime indicate a limitation of the
methods in dealing with potential feasibility issues. We observe that most cases occur when products



have a shorter shelf-life, and that none of the heuristics have a clear tendency in eliminating overtime
when compared to the others. For this issue we suggest the proposal of an improvement phase
that identifies neighborhoods of variables that cause overtime to occur and optimize them. This
procedure will be useful in ensuring feasibility when applying the heuristic to problems in which
overtime is not allowed.

5. Conclusion
In this article we have addressed the Integrated Procurement and Lot-Sizing Problem

(IPLSP) with perishability in the form of shelf-life constraints. This study was motivated by a gap
in the IPLSP literature in the sense that no heuristic methods were proposed to solve this problem.
Our objective was to propose decomposition-based MIP-Heuristics that can be used in a number of
variations of the problem and aid in the application of the IPLSP in industry cases.

Our results showed that the heuristics that apply time-based decomposition schemes,
which optimizes both production and supplier selection decisions across a period interval are more
effective, and that the use of other item-based decomposition can improve the solutions, although at
the expense of a significant increase in computational time.

For future research, our results lead to suggestions that can improve the proposed methods:
the first it to reduce the iterations of the FO heuristics that use product and process decomposition
schemes, by selecting only the variable subsets that are more promising in the sense of improving
the solution; the second is to apply an improvement scheme in order to minimize machine overtime,
which is an issue that occurs more often in instances with short product shelf-lives.
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