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RESUMO
Este artigo apresenta uma abordagem integrada para lidar com dois problemas da gestão

da cadeia de suprimentos, a compra de matéria-prima e dimensionamento de lotes. Esta abordagem
tem como motivação o fato de que, conforme mostrado pela literatura recente, um planejamento
integrado resulta em um processo de tomada de decisão mais eficiente, reduzindo custos operacio-
nais. Vários fatores presentes na gestão da cadeia de suprimentos são incluı́dos nesta modelagem:
múltiplos fornecedores oferecendo matérias-primas e descontos para compras em grandes quan-
tidades, custo de estoque baseado no preço e idade do material e limitações de orçamento. Os
resultados obtidos mostram que a abordagem integrada, a qual trata o problema considerando to-
das as restrições simultaneamente, resulta em soluções melhores que a sequencial, a qual resolve
o problema de dimensionamento de lotes seguido do problema de compra. Ao final do artigo, são
apresentadas propostas de pesquisas futuras.

PALAVRAS CHAVE. Dimensionamento de lotes. Integração. Compra de matéria-prima.

ABSTRACT
This article presents an integrated approach for addressing two problems from the supply

chain management area, raw material procurement and lot sizing. This approach is motivated by
the fact that, as shown by recent literature, an integrated planning leads to more efficient decision-
making, reducing operational costs as a whole. Several factors present in supply chain cases are
included in this problem: multiple suppliers offering material and discounts for bulk purchases,
an unit holding cost calculation which considers material price and age and budget limitations.
The results show that the integrated approach, which solves the problem considering all constraints
simultaneously, results in better solutions than the sequential approach, which solves first the lot
sizing than the procurement problem. Propositions for future research are made in order to improve
the integrated approach.

KEYWORDS. Lot sizing. Integration. Raw material procurement.



1. Introduction
The integration of different Supply Chain Management (SCM) problems has, in the past

years, received attention due to its efficiency in minimizing operational costs and delivery lead-times
and the improving technological capacity for computers to solve more complex problems. This
trend is illustrated by the reviews from Moons et al. [2017] and Melega et al. [2018], which show
that integrated approaches allow for a more efficient planning than decoupled methods. Several
authors have studied the problem of integrating decisions in raw material procurement and lot sizing
problems [Kim et al., 2002; Crama et al., 2004; Pathumnakul et al., 2011; Cunha et al., 2015; Zouadi
et al., 2018; Cunha et al., 2018]. This integration not only minimizes overall costs but also provides
a better control of inventory levels in multiple period scenarios.

In lot sizing problems, several constraints and costs are taken into consideration. The
production time is limited by machine availability, and setup operations between jobs account for
machine occupation with non-value added activities. In problems with multiple periods and produc-
tion stages, there are also holding costs for intermediate and finished products. Literature reviews
that address this problem in different approaches are found in the articles from Jans e Degraeve
[2008], Brahimi et al. [2017] and Melega et al. [2018]. Some applications of sizing in the industry
including: pulp and paper mill [Santos e Almada-Lobo, 2012], glass [Almada-Lobo et al., 2008],
chemical [Cunha et al., 2018], spinning [Camargo et al., 2014], brewing [Baldo et al., 2014] and
beverages [Pagliarussi et al., 2016]. It is also important to observe that some articles in the literature
also call ”lot sizing”problems in which a company order products from outside sources to fulfill a
distribution demand, which is not the case of this article. Here, the lot sizing problem relates to
production planning decisions.

The raw material procurement problem involves deciding when and how much to buy in
order to provide enough material for the production process, also taking into consideration factors
such as fixed ordering and transportation costs, holding costs, minimum order sizes and delivery
lead-times. Wider technological reach allows for the SCM decision makers to buy from different
suppliers with different characteristics, which turns the procurement problems into a more complex
process. Aissaoui et al. [2007] provided an extensive review on supplier selection and procurement
problems and their applications.

In order to increase their competitiveness, suppliers offer lower prices for larger quantities
of material bought in the form of discounts policies [Tempelmeier, 2002; Goossens et al., 2007].
Aissaoui et al. [2007] listed and classified these policies used in procurement problems with multiple
suppliers. The most commonly used policies are Total, Incremental and Bundle. Total discounts are
applied to all products when a condition is met, which can be based on the quantity of purchased
products or the business volume of the order, that is, the total value of the products. Incremental
discounts are given similarly to Total, but are only valid for products that are beyond a given discount
threshold. Bundle discounts are applied when a number of different products are purchased from
the same supplier.

Regarding the integrated lot sizing and procurement problem, Crama et al. [2004] discus-
sed the importance of discount policies in both operational and strategical levels. In operational
decisions, discount policies can lead the planning department to consolidate several purchases into
one in order to get the most advantageous prices. In the strategical level, the results of the procure-
ment model can be used for simulations and negotiations.

Discount policies also have an effect on the production decisions. Cunha et al. [2018]
showed that, in a problem that integrates procurement and production with flexible recipes, the
production is planned so that the raw material usage that takes more advantage of the discount



policies. Significant cost reductions can be observed when the results between the integrated and
subsequent approaches are compared.

The problem addressed in this article also provides the calculation of the holding costs
of a product or material kept in stock based on its price and age. Xie et al. [2013] highlighted the
importance of including the product purchase value in its holding costs since, among all factors
of inventory keeping (eg. operational costs, losses and insurance), the capital cost of the products
is the most significant one. As for the importance of considering product age, Tekin et al. [2001]
showed that it benefits systems with perishable products. Regarding models for this type of inven-
tory keeping, Coelho e Laporte [2014] and Costa et al. [2014] used integer variables to keep track
of inventory age in problems with item perishability.

In this article, the raw material holding costs are initially calculated as a fraction of the
purchasing costs, which is a more accurate model to value the total inventory when there are sig-
nificant price variations, such as with seasonal products. Regarding the inventory age, the problem
considers an increase over its initial holding cost for each period the item is kept in storage, in order
to avoid unbalanced purchasing decisions, such as purchasing a large quantity of a cheap material
in the first period to cover its demand during the entire planning horizon.

Overall, an integrated planning of raw material procurement and production planning cre-
ates more opportunities for minimizing costs in both parts of the supply chain. The integration
allows the procurement planning to take advantage of suppliers discount policies and to minimize
order and delivery costs, also considering the impact of large batches acquisitions in inventory.
From the production point of view, more efficient planning is made optimizing setup operations, in-
ventory levels and guaranteeing material availability. Lastly, the inventory pricing helps in avoiding
cases such as holding items for long periods and keeping expensive material in storage.

The objective of this article is to present a Mixed Integer Problem (MIP) formulation for
the lot sizing and raw material procurement problem with multiple suppliers offering total quantity
discounts and a holding cost function based on the price and age of the product, and evaluate the
efficiency of solving both decisions with an integrated approach. The proposed MIP is based on
Cunha et al. [2015], which addressed the integrated model with a single supplier with no discounts
and price based raw material holding costs. Additional constraints, based on Goossens et al. [2007],
are presented to model the supplier selection and discount options. The variables and constraints
used to model the inventory pricing policy are adapted from the article of Coelho e Laporte [2014].

This article is divided as follows: Section 2 describes the addressed problem in details and
presents a Mixed Integer Problem (MIP) formulation; Section 3 details the computational experi-
ments specifications, used instances and results; Section 4 contains the final remarks regarding the
results.

2. Problem Description and Mathematical Model

In this problem, a facility produces J unique products over a planning horizon that is
divided into T periods. There is an external deterministic demand for all products that needs to
be fulfilled and no backlogging is allowed. The bill of materials of each product consists of raw
material that needs to be purchased and from other products, forming a multi-level product structure
and creating internal demand for the products in its lower level.

The production process is done by M machines with limited capacity, and each product
is designated to a single machine. Since multiple products are products by each machine, setup
operations are needed to be done whenever a change occurs. These operations do not depend on the
production sequence, and setups can be carried over through multiple periods without any additional



cost. In case the machine capacity is not enough to fulfill the total product demand, it can be
extended by working overtime, although it is penalized by a significant increase in costs.

F raw materials are needed for the production, which are purchased from S available
suppliers. The purchasing decisions are more flexible since each material is offered by multiple
suppliers, and each supplier also sells multiple products. In order to increase competitiveness,
suppliers offer price reductions in form of Total Quantity Discounts (TQD), in which discounts are
applied in the base price of all units of material purchased if the ordered quantity falls within a
given interval. The base price of a material is equal for all suppliers, with the difference laying
on the discounted price and interval ranges given by each supplier that sells that material. Every
supplier offers D discount intervals for each product that it sells. Since fixed costs are charged
by the suppliers every time a purchase is made, there is an advantage in ordering more than one
material and in large quantities.

The total volume spent in raw material purchases is bounded by a budget, which is set
beforehand and is limited by the availability of resources from the manufacturer. With budget
constraints, it becomes necessary to plan ahead for periods with higher material consumption by
purchasing beforehand and making larger orders that achieve better discount intervals. In order to
ensure feasibility, this set budget can be exceeded subject to a penalty cost. Here we set this penalty
as a factor of 1, which means that any value spent over the budget is computed a second time in the
objective function.

Holding costs of both products and raw materials increase over the time they are kept in
storage. The age of an intermediate product or material does not affect other parameters such as
units consumed for production or machine processing time. There is no perishability and, for mo-
delling purposes, a maximum age of T periods was set in order to limit the number of variables and
parameters. Raw materials can be consumed in the same period they are ordered, while intermediate
products require a provisioning lead-time, which means that they can only be used for production
in the periods that follow the one in which they were finished. Since this model is designed to be
applied in rolling horizon cases with demand and production cycles, the final inventory is set to be
within a range of the initial values, in order to avoid shortages when the following cycle starts.

The indexes, subsets, parameters and variables used in this model are listed below.

Indexes
f ∈ {1, 2, . . . , F} Raw material
s ∈ {1, 2, . . . , S} Supplier
d ∈ {1, 2, . . . , D} Discount interval
j, i ∈ {1, 2, . . . , J} Product
m ∈ {1, 2, . . . ,M} Machine
t ∈ {0, 1, . . . , T} Period
k ∈ {0, 1, . . . , T} Product age

Subsets
R(f) Products that consume raw material f in their production
P(j) Products that consume product j in their production
K(m) Products that use machine m in their production



Parameters
af,j Quantity of material f consumed for one unit of product j
aj,i Quantity of product j consumed for one unit of product i
bj Production time of a single unit of product j
sj Machine setup time for the production of product j
uf,s,d,t Upper bound of interval d given by supplier s for material f in t
demj,t Demand for product j in period t
CAPm,t Production capacity of machine m in period t
Bt Purchasing budget in period t

I
k,0
f Inventory of material f with age k at the start of the planning period

Ik,0j Inventory of product j with age k at the start of the planning period
Iα Range factor for the final inventory values
∆tj Production lead-time of product j
Dj Total internal and external demand of product j
csj Machine setup cost for the production of product j
com Overtime cost of machine m for a time unit
h
k
f,t Holding cost for an unit of material f with age k in t

hkj,t Holding cost for an unit of product j with age k in t

pf,s,d,t Price of an unit of material f from supplier s in interval d in t

os Fixed order cost of supplier s

Variables
I
k
f,t Inventory of material f with age k at the end of t

Ikj,t Inventory of product j with age k at the end of t

W
k
f,t Units of material f with age k consumed in t

W k
j,t Units of product j with age k consumed in t

Qf,s,d,t Units of material f purchased from s in interval d in t
Xj,t Units of product j produced in t

Ot Purchased volume that exceeds the budget in t
Om,t Overtime of machine m in t
Yj,t Setup configuration for the production of product j in t
Uj,t Setup carry-over for the production of product j from t− 1 to t
Vm,t Auxiliary variable for machine m in t
Zf,s,d,t 1 if material f is purchased from supplier s in interval d in t, 0 otherwise
Z ′s,t 1 if there is a purchase from supplier s in t, 0 otherwise

2.1. Objective Function

The total cost function to be minimized is divided in three parts for simplification purpo-
ses. Equation (1) is the sum of the raw material procurement variable and fixed costs and penalties
for exceeding the budget. Equation (2) is the sum of the holding costs for both raw materials and
manufactured products. Equation (3) is the sum of the setup operations and overtime capacity usage
costs. The final cost function is giving by adding these three terms, as shown in Equation (4). These
three sums are added in the main function, Equation (3).



PC =
F∑
f=1

S∑
s=1

D∑
d=1

T∑
t=1

(pf,s,d,t ·Qf,s,d,t) +
S∑
s=1

T∑
t=1

(os · Z ′s,t) +
T∑
t=1

Ot (1)

IC =

F∑
f=1

T∑
k=0

T∑
t=1

(h
k
f,t · I

k
f,t) +

J∑
j=1

T∑
k=0

T∑
t=1

(hkj,t · Ikj,t) (2)

OC =
J∑
j=1

T∑
t=1

(csj · (Yj,t − Uj,t)) +
M∑
m=1

T∑
t=1

(com ·Om,t) (3)

min z = PC + IC + OC (4)

2.2. Raw Material Procurement Constraints

Constraints (5) set the purchased quantity in its proper discount interval. Constraints (6)
guarantee that at most one discount interval is chosen per product. Constraints (7) limit the monthly
procurement volume to a budget, with a penalty for overspending.

uf,s,d−1,t · Zf,s,d,t ≤ Qf,s,d,t ≤ uf,s,d,t · Zf,s,d,t ∀f, s, d, t ≥ 1 (5)
D∑
d=1

Zf,s,d,t ≤ Z ′s,t ∀f, s, t ≥ 1 (6)

F∑
f=1

S∑
s=1

D∑
d=1

(pf,s,d,t ·Qf,s,d,t) +
S∑
s=1

(os · Z ′s,t) ≤ Bt + Ot ∀t ≥ 1 (7)

2.3. Raw Material Inventory Flow Constraints

Constraints (8) set the values for the initial inventory, while constraints (9) are responsible
for keeping track of the unused inventory age from one period to its following one. Constraints (10)
define the material quantity that is purchased and not consumed in a period as brand new inventory.
Constraints (11) describe the entire inventory flow, considering materials with all ages. Constraints
(12) set that the amount of consumed raw material considering all ages is equal to the amount
required by the production processes, given that the material age does not have an influence in the
product. Constraints (20) guarantee a minimum inventory of raw material to start the following
planning horizon.



I
k,0
f = I

k
f,0 ∀f, k ≥ 1 (8)

I
k−1
f,t−1 −W

k
f,t = I

k
f,t ∀f, t ≥ 1, k ≥ 1 (9)

S∑
s=1

D∑
d=1

Qf,s,d,t −W
0
f,t = I

0
f,t ∀f, t ≥ 1 (10)

T∑
k=0

I
k
f,t−1 +

S∑
s=1

D∑
d=1

Qf,s,d,t −
T∑
k=0

W
k
f,t =

T∑
k=0

I
k
f,t ∀f, t ≥ 1 (11)

T∑
k=0

W
k
f,t =

∑
j∈R(f)

(af,j ·Xj,t) ∀f, t ≥ 1 (12)

Iα ·
T∑
k=0

I
k,0
f ≤

T∑
k=0

I
k
f,T ∀f (13)

2.4. Product Inventory Flow Constraints
These constraints are similar to those used for the raw material inventory flow. Constraints

(14) and (15) are the equivalent of (8) and (9), respectively. Also, in Constraints (14), it is also
necessary to subtract from the initial inventory the units that are consumed by another products
already in the first period due to the provisioning lead-time. Constraints (16) set zero-age inventory
as the number of units produced minus the amount of these units that consumed in that period.
Constraints (17) guarantee the inventory flow. Constraints (18) and (19) equal the total number of
consumed units in a period to the demand plus the amount used in order to manufacture other units
in case of an intermediate product. Finally, Constraints (20) set a minimum final inventory value
for the products.

Ik,0j −Xk
j,0 = Ikj,0 ∀j, k ≥ 1 (14)

Ik−1
j,t−1 −W k

j,t = Ikj,t ∀j, t ≥ 1, k ≥ 1 (15)

Xj,t −W 0
j,t = I0

j,t ∀j, t ≥ 1 (16)
T−1∑
k=0

Ikj,t−1 + Xj,t −
T∑
k=0

W k
j,t =

T∑
k=0

Ikj,t ∀j, t ≥ 1 (17)

T∑
k=0

Xk
j,0 =

∑
i∈P(j)

aj,i ·Qi,∆tj ∀j (18)

T∑
k=0

W k
j,t = demj,t +

∑
i∈P(j)

(aj,i ·Qi,t+∆tj ) ∀j, t ≥ 1 (19)

Iα ·
T∑
k=0

Ik,0j ≤
T∑
k=0

Ikj,T ∀j (20)

2.5. Production Constraints
Constraints (21) limit the machine usage to its maximum capacity, and any necessary extra

usage is counted as overtime work. Constraints (22) guarantee that the production occurs only if



the needed setup operations are done. These constraints also bound the value of the Xj,t variable to
the total demand of product j from period t onwards.

The setup carry-over is modelled using Constraints (23) to (28): Constraints (23) limit the
carry-over to one product setup per machine; Constraints (24) and (25) allow for the same setup to be
carried over to subsequent periods; Constraints (26) and (27) eliminate the need of setup operations
being performed again when the setup is carried over from the previous period, and Constraints (28)
set that no setup is carried over to the start of the first period.

∑
j∈K(m)

((bj ·Xj,t) + sj · (Yj,t − Uj,t)) ≤ CAPm,t + Om,t ∀m, t ≥ 1 (21)

Xj,t ≤ Dj · Yj,t ∀j, t ≥ 1 (22)∑
j∈K(m)

Uj,t ≤ 1 ∀m, t ≥ 1 (23)

Uj,t ≤ Yj,t−1 ∀j, t ≥ 1 (24)

Uj,t ≤ Yj,t ∀j, t ≥ 1 (25)

Uj,t + Uj,t+1 ≤ 1 + Vm,t ∀m, j ∈ K(m), t ≥ 1 (26)

Yj,t − Uj,t + Vm,t ≤ 1 ∀m, j ∈ K(m), t ≥ 1 (27)

Uj,1 = 0 ∀j (28)

2.6. Variable Domains
These last constraints sets are used to define the domain of the variables in the model.

I
k
f,t, I

k
j,t,W

k
f,t,W

k
j,t, Qf,s,d,t, Xj,t, Ot, Om,t ≥ 0 ∀f, j, s, d,m, k, t (29)

Yj,t, Uj,t, Vm,t, Zf,s,d,t, Z
′
s,t ∈ {0, 1} ∀f, j, s, d,m, t (30)

2.7. Solution Approaches
This article presents two approaches to solve the lot sizing and raw material procurement

problem. The first one, Integrated Model, solves the problem in an integrated manner, considering
all variables and constraints, and takes advantage of the effect a production decision has on the
procurement problem and vice versa. The second approach, the Sequential Model, firstly solves the
lot sizing problem and then, with a fixed production plan, solves the procurement problem.

• Integrated Model: solves both the lot sizing and procurement problems simultaneously,
minimizing the cost function in Equation (4) subject to Constraints (5)-(30).

• Sequential Model: solves the lot sizing problem, subject to Constraints (14)-(30), then uses
the production values (Xj,t) as inputs for the procurement problem, subject to Constraints (5)-
(13),(29)-(30). In both problems the objective to be minimized is the sum of the respective
costs of the problems in Equation (4).

3. Computational Experiments and Results
The models were coded in Python 3.6.9 and solved by Gurobi 7.5.2 using its default

parameters, number of threads limited to 8 and a time limit of 3.600 seconds for each instance.
The experimentation was performed in a cluster containing nodes with 2 Intel Xeon E5-2680v2
processors each, 10 cores, 2.8GHz ad 128GB DDR3 1866MHz RAM.



3.1. Experimentation Data
This experimentation used the lot-sizing problem instances from Tempelmeier e Bus-

chkühl [2009], with data regarding raw material purchasing and holding costs, consumption and
initial inventory from [Cunha et al., 2015]. In order to adapt these instances for this problem, addi-
tional data for discount intervals and budget was generated. Totally, 216 instances were used.

In more detail, the instances chosen were those of Class 2 from the database of Tempel-
meier e Buschkühl [2009], which is named in their article as New invented data. These instances
have the following parameters: number of products J = 10, number of machines M = 3, number
of periods T = 8. Using the same nomenclature from the authors, the other characteristics for
instances are: assembly and general product structure; non-cyclic process structure; three demand
profiles; setup costs, setup times and machine capacity profiles 1, 2 and 1, respectively (as named
by the authors). The instance data from Cunha et al. [2015] consist of two raw material profiles,
with F = 6, 12, and three raw material price scenarios. Further information on these instances can
be found in the original articles.

The suppliers and discount data generated for this article follow these assumptions: num-
ber of suppliers S = 12; each raw material is sold by three different suppliers; discounts are given
following the Total Quantity Discount Policy [Goossens et al., 2007] for each individual raw mate-
rial; the discounts are divided into D = 5 discount intervals for each raw material. Two scenarios
were generated, with different average maximum discounts (20% and 30%). The fixed orders costs
were randomly generated in an uniform distribution in the [1000, 3000] range.

The purchasing budget calculation was done by estimating how much it is going to be
spent during the planning horizon based on the product demand and raw material base prices. The
budget per period is then obtained by dividing this total value by T and multiplying it by a factor
that changes how flexible the purchasing process is. In this case, flexibility means how much the
manufacturer can anticipate purchases to take advantage of discounts and stock material for periods
with higher consumption, in which the budget will not allow for all the materials to be bought then.
The budget scenarios are listed in Table 1, and there are 72 instances for each scenario.

Budget Scenario Multiplier Flexibility
1 1.5 Loose
2 1.25 Intermediate
3 1 Tight

Tabela 1: Characteristics of the budget scenarios.

Holding costs of products were directly taken from the instances of Tempelmeier e Bus-
chkühl [2009], while the holding costs of raw materials were set as 20% of the purchasing price.
The holding cost function over time is linear: for each period an item is kept in inventory, its holding
cost is increased by 15% over its initial value.

Given the parameters, it is possible to calculate the size of the integrated model: with
F = 6 there are 5484 constraints and 8200 variables (4280 of them binaries); and with F = 12,
9522 constraints and 14728 variables (7160 binaries).

3.2. General Results
From the 216 instances, the integrated model optimally solved 26 (12%) within the time

limit, with an optimality gap of 3.12%. This gap is given by the solver and is the relative difference
between the best solution found and the lower bound of the problem.



As for the sequential model, all instances were solved in an average of 48 seconds, taking
46 seconds for the lot sizing problem and 2 for the procurement. Even though this model is faster,
in all cases the integrated model found better solutions. Since the sequential approach solves the
lot sizing problem optimally, the production related costs from its solution are lower than those
from the integrated approach. Therefore, the cost reduction obtained when using the integrated
approach comes from the purchasing and raw material holding costs. The improvement gained with
the solution of the integrated model (IM) over the sequential (SM) is calculated using the equation
Improvement(%) = SM−IM

SM .
The values of the optimality gap of the integrated model solutions and their improvement

over the solutions of the sequential model are shown in Table 2.

Budget 1 Budget 2 Budget 3
Average Std. Dev. Average Std. Dev. Average Std. Dev.

Gap 2.62% 1.72% 2.96% 2.05% 3.78% 2.54%
Improvement 9.60% 3.19% 9.14% 3.30% 9.02% 3.52%

Tabela 2: Optimality gap and improvement over sequential solution obtained by solving the integrated model.

3.3. Detailed Results
Table 3 illustrates the cost reduction obtained by the integrated approach when compared

to the sequential by showing the how much the purchasing volume is allocated in each discount
interval. It can be observed that the integrated approach maximizes the amount of purchases in
the interval with higher discounts, and this is done by adjusting the lot sizing decisions in a way
that make bulk purchases viable, that is, without excessively increasing inventory costs. It is also
possible to notice that with looser budgets, more volume is allocated into better discount intervals,
whereas with tighter budget, the volume is distributed more evenly.

Discount Interval
Budget 1 Budget 2 Budget 3

Integrated Sequential Integrated Sequential Integrated Sequential
1 17.94% 30.20% 18.83% 30.16% 20.71% 29.75%
2 16.77% 29.91% 19.18% 30.71% 21.02% 29.40%
3 18.90% 21.51% 17.39% 21.55% 19.87% 21.95%
4 21.70% 13.01% 20.60% 12.20% 16.78% 13.97%
5 24.69% 5.37% 23.99% 5.38% 21.63% 4.94%

Tabela 3: Percentage of purchasing volume per discount interval.

The graphs in Figure 1 show how the purchasing and raw material holding costs vary
over time. The integrated approach focuses on purchasing more material in the earlier periods and
reducing inventory to a minimum value for the latter. Both approaches purchase the materials for
the final inventory in the last period in order to have no additional costs from inventory age. An
effect of the proposed holding costs pricing policy proposed in this model is seen on the sequential
model solutions, in which the holding costs are higher in the latter periods even though a lot less
material is being purchased, which means that in these cases inventory is being kept for longer.

However, the purchasing strategy obtained by the integrated solution approach is achieved
by an unbalanced production planning, as shown by the machine occupancy rates in Figure 2. The
lot sizing instances used consider a non-cyclic process structure, in which the products produced in



Figura 1: Purchasing and raw material inventory costs per period.

Machine 3 are consumed for those produced in Machine 2, and the same happens with Machines
2 and 1. Therefore, due to the provisioning lead-times, the machine occupancy in Machines 2 and
especially 3, is reduced to close to zero in the last periods, only producing what is needed for the
final inventory. A solution for this problem is to add constraints that set a lower bound for the
machine occupancy, which approximate the model even more to a real life industrial case, in which
machines need to operate at a minimum rate so the process is viable.

Figura 2: Machine occupancy per period.

4. Conclusion
This article presented an integrated approach to the lot sizing and raw material procu-

rement problem with supplier selection, quantity discounts, age-based holding costs and budget
limitations. The proposed model is an extension of the one presented by Cunha et al. [2015] that
considers the additional constraints, and the computational experiments used problem instances of
the databases from Tempelmeier e Buschkühl [2009] and Cunha et al. [2015], with additional data
being generated when needed.

The experimentation results show that the integrated model obtained solutions with total
costs that are on average 9.25% lower than those from the sequential model. This cost reduction
is achieved by adjusting the lot sizing production plan in order to increase the raw material orders
sizes, getting higher discount rates from suppliers. A trade-off exists between these bulk purchases
and other limitations that appear in real life cases that are included in this model (budget constraints
and aging inventory costs), and the integrated model is shown to be more flexible to optimize the
total costs than the sequential, since in this approach the purchasing model is limited by fixed
production decisions made when optimally solving the lot sizing model.



Suggestions for future researches address some limitations found while implementing the
integrated model, such as the lower machine occupancy rates in the latter periods and more accurate
inventory pricing functions. Another improvement is to model this problem using different time
scales for procurement and production decisions, considering lead-times for raw material delivery,
which are significantly longer than provisioning lead-times. Lastly, it is suggested to analyse the
impact on the solutions when backlogging is allowed. In terms of methods, our literature review
shows that no heuristics were yet proposed for this integrated problem. Since the results from
this article show the limitations of solving the MIP formulation, we aim to develop heuristics and
matheuristics for this problem in future works.
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