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Abstract

Along with climate change, the use of renewable energy becomes
more important. Farms have a high energy demand as well as space for
the installation of renewable energy plants and hence there is a high
potential for reducing the use of fossil energy sources by using self-
produced renewable energy when available. To best use that energy
when it is available, smart energy management systems can reschedule
tasks with high energy demand and can charge or discharge storages.
For such a system, models describing the behavior for all devices of a
farm are required.

We designed a software module using a black box approach to iden-
tify general databased models at low computational cost. The software
can be used to calculate forecasts for arbitrary generator and storage
devices. Using real world data we apply this to model the temperature
of a milk cooling system and as a first step we generate additional in-
puts to improve the model where a next step would be generating these
inputs automatically. With these additional inputs, the temperature of
that system can be forecasted well meeting all time constraints during
the model identification on low cost hardware.

Keywords: databased modeling; least-squares regression; forecasting;
renewable energy; computational mathematics & statistics.

1. Introduction

As climate change is progressing, actions need to be taken to prevent
irreversible damage for the planet. A shift from conventional to renewable
energy sources is a possible action. A downside is that energy from renewable
sources is not always available when needed since it often depends on the
weather conditions. To tackle that, energy management systems can play
an important role by shifting loads that are flexible in their execution time
to a time with a surplus of energy. Another option is to install storage
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devices and to charge these when there is a surplus of renewable energy and
to discharge them when more energy is needed than generated.

The project SmartFarm aims to maximize the use of self-produced en-
ergy on farms at a small scope. Farms are very eligible for that since they
have a high energy demand on the one hand, but also much space to install
renewable energy plants on the other hand. Besides, many farms in Ger-
many already have photovoltaic plants installed and sell the energy they do
not consume to the network which is not economic for more recent plants
due to the grid parity. The project SmartFarm consists of two major com-
ponents: The first, a measurement and control system, measures power data
from all generator and certain consumer devices as well as temperatures of
thermal storage devices and the states of charge of battery storages. It is
also able to implement control signals that arise from the second part, that
is a software module to calculate such control signals. It aims to shift loads
or charge storages such that the use of self-produced energy is maximal and
all constraints, e.g. time constraints or physical laws, are obeyed [1].

To find an operation schedule for a farm, it is essential to know the future
energy generation and consumption as well as the behavior of storage de-
vices. The power values, temperature values and states of charge measured
need to be modeled in order to calculate forecasts predicting the behavior
of the devices for the energy management system.

In the literature, there exist different modeling approaches. They can
be classified into physical models on the one hand and databased models
on the other hand [2]. Physical models, also called physics-based models,
are based on physical correlations. Databased models are calculated based
on data measured beforehand and they can find correlations that were not
known before. In [3], databased models are further divided into models
basing on statistical methods such as regressions and artificial intelligence
techniques such as neural networks where identifying models is much faster
with an appropriate regression. Both approaches are frequently applied
to the forecast of energy generation. In [4], a neural network is applied to
estimate the power generated by a wind turbine and in [5] an adaptive neuro-
fuzzy inference system is used to forecast power generation of wind plants
where both approaches require much computation time to identify models.
They are also applied to model state of charges of a battery, for instance in
[6]. In [7] and [8], forecasts are made based on regression methods which is
much faster.

Therefore we use a databased regression approach to calculate models
for the generators and storages. Hence the data measured within the mea-
surement and control system is used and no assumptions on the models need
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to be made. This has the advantage that models for all kinds of devices can
be computed which is very helpful since on farms a variety of devices is in-
stalled. Additionally, no expert knowledge is required to transfer the system
to other devices. Another benefit is that regression approaches require only
small computation times which suits the SmartFarm software well since it
should be executed on micro computers to ensure low cost for the energy
management system.

In [9, 10], the same approach is used to model a photovoltaic plant, a
wind plant and a battery storage device with an extension to probabilistic
models. In contrast to that, we will model devices with a more complex
dynamical behavior and show as a first step how we can improve these by
adding additional inputs applying it to the temperature on a milk cooling
tank. This requires some expert knowledge and hence, a next step would be
to generate these additional inputs automatically.

At first, in Section 2, the least squares regression used for modeling in
our approach is briefly introduced. Section 3 deals with the application of
the method to model the temperature of a milk tank using real world data.
Section 4 summarizes the findings.

2. Least squares regression for databased modeling

In this section we sketch how models are identified using a least squares
regression as proposed by [11].

Given measured output data y; € R,i € {1,...,n} at n different points
in time and given corresponding input data x; € R™,i € {1,...,n}, at the
same points in time, we want to find a model f : R™ — R that fits this
data best. As a result of Taylor’s Theorem, it is possible to approximate a
function f around a point zg € R™ with a polynomial given that f is regular
enough. The coefficients of this polynomial are the parameters we want to
identify in the course of this paper using the input and output data.

To describe a polynomial function of degree d in more than one di-
mension, i.e. when m > 1, a notation with multi-indices is required. Let
a=(aq,...,qam,) € N™ be a multi-index whose degree |a/ is the sum of its
components, that is [af = 377" a;. Now, for a vector z; = (i1,...,%im) €
R™, where z;; is the j-th component of the vector z;, we define zf :=
[[2 (%i)%. Let p € R’ be a parameter vector of size £ = (m;d). A
polynomial function f of degree d can now be written as

f(a:i,p) = Z paxia-
aeN™
|er|<d
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The parameter vector p, i.e. the vector of coefficients of the polyno-
mial f, is now chosen to best fit the data measured. We assume a nor-
mally distributed error of the data. Hence we determine the parameters
p = (p1,...,p¢) such that the mean-square deviation between the model
F(X,p) = (f(a1,p),--., f(xn,p)" for X = (21,...,2,)) € R™" with
r; € R™ and the measured output data y = (y1,...,y,)? € R” is mini-
mal. In other words, p is the optimal solution of min,cge||F(X,p) — yl|2.
This optimization problem can be solved very efficiently using the fact that
the function F' is linear in p. This allows to rewrite the function F(X,p) as
the product of a matrix A(X) € R™* and the vector p. This gives following
optimization problem:

min||F(X,p) — = min||A(X) -p — .
peRZH (X,p) =yl pew” (X)-p =yl

To solve this, we use a QR-decomposition method to decompose the ma-
trix A(X), which can be calculated directly from the input data, into an
orthogonal matrix ) and an upper triangular matrix R. Then the mini-
mization problem can be rewritten and solved by back substitution at low
computational cost. For details on that or on how to decompose the matrix
A(X) efficiently, refer to [12]. All in all, the least squares regression allows
to identify the coefficients of a polynomial model at low computational cost.

3. Experimental results

In this section we apply the least squares regression to real world data,
in particular we model the temperature of a milk tank, a thermal storage
device.

3.1 Test setting

The data on hand was measured at a milk tank on a farm in Lower
Saxony, Germany between February 18, 2018 and April 10, 2018 and then
interpolated to minutely data with a moving average filter to reduce the
noise in the measurements. It consists of the temperature inside the milk
tank and the measurements of active power consumed by the milk tank.
Both are available in a minutely resolution, but for modeling we decide to
use a resolution of 30 minutes. Within one minute the temperature often
does not change enough to be visible within the data. Hence the actual
behavior, that means a slow change of temperature, cannot be learned by a
model in that case but in data with a resolution of 30 minutes, the changes
become clearly visible.

The 52 days of data are divided into data used for training the model, i.e.
the data used to identify the coefficients, and testing data used to evaluate
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a model’s quality. The length of the training horizon is 26 days. On both
the training horizon and the test horizon, the rooted mean square deviation
(RMSE) is determined and then normalized to the biggest absolute value
measured during training and testing horizon (nRMSE).

In addition to those remarks on the data, little preprocessing has been
conducted before the model identification by removing some obvious errors
in the measurements. Up to eight temperature or power values per day,
from a total of 1440 values, have not been plausible since their orders of
magnitude were much higher than for all other values. These outliers are
replaced by the values measured one minute before them since data does
not often change from one minute to another.

3.2 Modeling dynamic behavior by iterative forecast computation

The temperature inside the milk tank follows a very regular pattern
and can also be modeled by using its periodicity. However, the temperature
forecast then would not react to the control given by the energy management
system when it aims to shift the power consumed by the milk tank to a
different time. Hence such a model for the temperature of the milk tank
cannot be used to reschedule power consumption within the framework of
the energy management system. Therefore, we use the dynamical behavior
of the temperature at the milk tank, i.e. the fact that the temperature at a
certain time depends on the temperature one step before that time and the
active power as well as potential additional input values.

Then, the temperature value one step before is usually not available when
computing a forecast since forecasts for up to 24 hours are required. Hence,
after identifying a model also based on the temperature one step before we
iteratively compute the forecast for each 30 minutes at a time to obtain a
24-hour forecast. The first value within the forecast horizon, is computed
using the latest measured value of the temperature and for all later values
in the forecast, the temperature value forecasted one step before is used.

3.8 Numerical results

At first, we model the temperature of the milk tank in a resolution of
30 minutes based on data that is available in the actual application without
using expert knowledge. The first input x; is the active power consumed
by the device between the last time step and the one to be forecasted. It is
forecasted using another databased method within the project SmartFarm
and thus would be available when computing the forecast in an energy man-
agement system. However, this is not available yet and thus the model is
trained and tested on the active power measurements. The second input xo
is the temperature one time step before, i.e. 30 minutes before the value

GaIOé { Este trabalho foi publicado utilizando o Galoa proceedings



doi:10.6062/jcis. 2015, H* #* ***x Lachmann et al. 6

to be forecasted. An additional influence to the behavior of the milk tank
temperature arises from the fact that within an energy management system
the cooling process is controlled, meaning that it is switched on and off at
different times than usual. To find an optimal schedule, potential control
values are given as an input to calculating forecasts. Hence these are also
available and used as a third input z3 to the model, where x3 = 1 if the
cooling is set to be active and x5 = 0 if the cooling is turned off.
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Figure 1 - Model of the temperature inside the milk tank based on input
data x1, x2, and x3 during an excerpt of the training horizon (red) and the
testing horizon (green) plotted against the actual measurement (blue).

Coefficients of a polynomial model of degree one are identified using the
inputs x1, x2 and z3 taking only a few seconds. In the testing horizon,
forecasts for 24 hours are calculated at midnight of each day. Computing
forecasts at other times than midnight has only little influence on the results
and is hence not regarded here. In Figure 1, the model during training (red)
and testing (green) is compared with the actual measurements where the
forecast is calculated iteratively in the testing horizon. The error value
(nRMSE) during the training is good being 4.48 %, but during the testing
horizon it is much higher being 15.0 %. This arises since a small error for
a value at the beginning of the forecast horizon influences all later values
and hence the error grows bigger due to the iterative forecast computation.
In general, the error values are okay, since in [13], the state of charge of
lithium-ion batteries, a simpler storage device, is estimated with an error of
less than 5%. Nevertheless, the model behavior does not match the actual
behavior of the temperature, for instance peaks in the forecast occur at
different times than peaks in the measurement. Hence, the model could not
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Variable | Description

T Active power

T9 Temperature 30 minutes before current value

T3 xg = 1, if milk is actively cooled, else x3 = 0

T4 x4 = 1, if no milk is in the tank, else 4 =0

s x5 = 1, if milk from one milking is in the tank, else x5 = 0
T zg = 1, if milk from two milkings is in the tank, else zg =0
T7 x7 = 1, if milk from three milkings is in the tank, else 7 = 0
s xg = 1, if milk from four milkings is in the tank, else xg =0

Table 1 - Description of all inputs used for modeling.

be used in an energy management system. Also for polynomial degrees of
two or three or lower data resolution, the model does not yield a better
behavior. A possible reason is that important information is missing, for
instance warm milk is filled into the tank twice a day influencing the milk
cooling’s behavior. However, this information is not available as measured
data.

Since the model for the temperature of the milk tank does not describe
the actual behavior well and influences to the temperature that are not mea-
sured are missing in the model, we now evaluate the influence of additional
inputs for the model arising from expert knowledge about the times of the
milking processes and the cleaning of the milk tank. The milking processes
take place twice each day at 5:45am and 4:30 pm local time. Every sec-
ond day, all milk in the tank is picked up at approximately 8:30 pm local
time. After that, a cleaning process is started where hot water is conducted
through the tank. This will now be used as an input to the model and we
will show how using this knowledge improves the model. As a next step
the inputs should be generated automatically from the data such that the
expert knowledge is no longer required.

We add different input vectors to the data (see Table 1). Five binary
input vectors x4, ...,xs are added. The first, x4; indicates whether there
is milk in the tank (x4+ = 1) or not (x4 = 0) at time ¢. The variables
T5¢, Tet, T7,t OF gy are one at time t if one, two, three or four milking
processes have taken place since the last milk pickup, respectively and zero
otherwise. Evaluations not shown in the course of this paper have shown
that combining these five binary variables to one discrete variable does not
have a positive influence on the model. Also, adding a variable indicating
the cleaning process does not yield better results.
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Using all inputs x1,...,xs to identify the coefficients of a polynomial
model with degree one of the milk tank temperature, we obtain the model
depicted in Figure 2. Now, the behavior of the model corresponds to the
measurements much better. Only the temperature peaks during the cleaning
process cannot be modeled well. The error during training is 4.00 % and
during test it is 11.4 % and hence also better than before. All in all, using
the additional input improves the model’s quality noticeably.
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Figure 2 - Model of the temperature inside the milk tank based on input
data z1,...,zs during an excerpt of the training horizon (red) and the
testing horizon (green) plotted against the actual measurement (blue).

4. Conclusion

In this paper, we introduce a least squares regression to identify models
for forecasting the behavior of devices on a farm. These very general poly-
nomial models are obtained at low computational cost. We identify models
for a milk tank’s temperature based on different real world input data. A
model based only on active power, the temperature 30 minutes before and
a control given by an energy management system does not fit the data well.
If we use additional inputs that are generated from external knowledge, a
polynomial model of degree one describes the data well.

Further work will combine the modeling with generating the additional
inputs for the models automatically and only from data, for instance by
recognizing the different cooling behaviors at different fill levels. Then, the
transfer to other devices on farms does not depend on expert knowledge such
as milking times and the generality of the approach is no longer affected.
Also testing the models for the temperature of the milk tank in a live system
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where actual controls might affect the behavior is interesting. In that case it
could be helpful to consider the adaptation of the models to new data. For
an increased robustness, applying the Levenberg-Marquardt method instead
of the QR~decomposition could be an interesting approach.
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