

Expanding the Frontiers of Pharmaceutical Sciences: rethinking the outcomes

Fast determination of ascorbic and isoascorbic acid by capillary electrophoresis

Silva Junior, C. R.1*, Foratori, M.A.G. and Jager, A.V.1 1) Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, SP, Brazil

*e-mail: csjunior@usp.br

Keywords: ascorbic acid, orange juice, capillary electrophoresis

ABSTRACT

This work aimed to validate an analytical method to determine ascorbic and isoascorbic acids in fresh and commercial orange juices samples. Figure 1 illustrates the separation of analytes under optimized analytical conditions. Samples were diluted four-fold with 1000 mg/L EDTA and centrifuged. LOD and LOQ were estimated as 3 and 10 mg/L, respectively. Evaluation of linearity (10 to 200 mg/L) showed good coefficients of correlation (r > 0.99). Recovery was assessed at 50, 100 and 200 mg/L of ascorbic and isoascorbic acids ranged from 100-107 and 105-106%, respectively. Precision (n=3) varied from 0.62 to 2.3% and 1.6 to 3.9% for ascorbic and isoascorbic acid, respectively. Validated method was used to analyze freshly squeezed orange juices and diverse commercial samples. Concentration of ascorbic acid ranged from 112 to 567 mg/L in fresh orange juice and from <LOQ to 304 mg/L in commercial samples. None samples had isoascorbic acid concentration above LOQ.

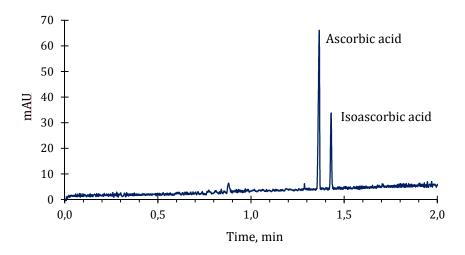


Figure 1. Fresh orange juice fortified with 150 mg/L isoascorbic acid. Conditions: Uncoated fused-silica capillary with 38.5 cm total length; Electrolyte: 20 mmol/L sodium tetraborate (pH 9.2); Injection: 50 mbar/3 s; Applied voltage:30 kV; Detection: UV, 270 nm.

ACKNOWLEDGEMENTS

Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo.

REFERENCES

Wang, Xu, et al. Recent advances in vitamins analysis by capillary electrophoresis. Journal of pharmaceutical and biomedical analysis 147 (2018): 278-287.