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Abstract: In this work, a new method of stability analysis of sampled-data control systems with
input saturation is proposed. With the use of a class of time-dependent Lyapunov functions, the
continuous and discrete dynamics of the system are taken into account to assess the stability of
the closed-loop system when aperiodic sampling is considered. Considering a particular quadratic
form of this class of Lyapunov functions, new conditions to estimate the region of attraction of
such nonlinear systems are derived.
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1. INTRODUCTION

Much attention has been devoted to the stability analysis
of sampled-data control systems in the past decades (Hes-
panha et al., 2007). A sampled-data system consists in a
plant evolving in continuous-time and a controller setting
inputs to that plant in discrete-time (Seuret and Gomes da
Silva Jr., 2012). On one side, in the last years of the previ-
ous century an intensive research on sampled-data systems
under periodic sampling has been developed (see Aström
and Wittenmark (1984) and Chen and Francis (1994)).
On the other side, the rising importance of the field of
networked control systems has brought new challenges to
the application of control theory (P. Antsakils, 2007), one
very important being the feature of aperiodic sampling
(i.e., sampling with variable sampling intervals) imposed
by the network. For a sensor to transmit a continuous-
time signal over a network, the signal must be sampled,
converted to a digital format, transmitted, and finally the
data must be converted again to the analog format to be
received at the controller side. The total delay between
sampling and eventual reception is subject to significant
variations due to network conditions such as congestion
and eventual packet drop-outs (Hespanha et al., 2007), and
motivates the study of aperiodic sampled-data systems.

The study of aperiodic sampled-data systems is quite un-
derdeveloped compared to the periodic counterpart (Hetel
et al., 2016), but has been receiving attention recently in
the context of control theory. One way to represent it is
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by an impulsive system model. This system framework
emerges as a generalization of the discrete-time model
which considers the inter-sampling system behaviour us-
ing signal lifting (see Hetel et al. (2016) and references
therein). For instance, in Geromel and Souza (2005) an im-
pulsive system framework is used to provide conditions for
the stabilization of sampled-data linear systems, aiming at
optimizing H2 and H∞ criteria. More recently, in Geromel
and Souza (2005), the synthesis of dynamic output feed-
back using differential matrix inequalities is addressed. It
should be highlighted that the above references do not
consider the possibility of actuator saturation.

In the present paper, the almost ubiquitous feature of
input saturation is taken into account. Numerous works
consider the problems of stability analysis of systems with
input saturation (see Hu and Lin (2001) and Tarbouriech
et al. (2011)). Many of these approaches have been pro-
posed considering either continuous or discrete-time sys-
tems. Considering the periodic sampling case, the prob-
lem of assessing stability of a samped-data system with
dynamic output feedback control law has been addressed
in Dai et al. (2009). Aperiodic sampling in the presence
of control saturation is addressed in Seuret and Gomes
da Silva Jr. (2012) and Gomes da Silva Jr. et al. (2016)
considering a looped-functional approach. In Fiacchini and
Gomes da Silva Jr. (2018) this problem is addressed consid-
ering an impulsive system framework and the discrete-time
dynamics of the closed-loop system cast as a difference
inclusion obtained from a partition of the intersampling
interval.

In the present paper we are interested in the problem
of stability analysis of an aperiodic sampled-data system
subject to input saturation. From an impulsive system rep-
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resentation of the closed-loop system it is shown that, by
satisfying stability conditions based on a clock-dependent
Lyapunov function, a monotonically decreasing quadratic
form of this class of function ensures the local stability of
the system equilibrium point. Moreover, the conditions can
be cast in LMI-based optimization problems to generate
piecewise quadratic estimates of the region of attraction
of the origin.

The content of this paper is organized as follows: In sec-
tion 2, the impulsive representation of the sampled-data
controlled system is presented. Section 3 regards Lya-
punov stability theorem and its statement for the clock-
dependent class of functions. In section 4, the saturation
effect is included in the modeling, and stability conditions
dealing with this nonlinearity are derived. In section 5 an
optimization problem to generate estimates of the region of
attraction of the origin is stated, and a numerical example
is exposed in section 6.

Notation: N is the set of natural numbers, R is the set
of real numbers, and R+ is the set of positive real numbers.
For a function x : R→ Rn, we define

x(t−) = lim
t̃→t, t̃<t

x(t̃)

The ith element of a vector v is denoted by v(i), the
element in the ith row and j th column of a matrix M
is denoted by M(i,j), while M(i) denotes the entire row
i of M . Note that the indexation of lines and elements
only occurs between parentheses - in Mm, m is simply a
subscript. Sn is the domain of symmetric matrices of order
n, and for a symmetric matrix S ∈ Sn, S > 0 means that
S is positive definite. M ′ denotes the transpose of M . I
denotes a identity matrix of appropriate dimensions.

2. CONTROL UNDER APERIODIC SAMPLING

Consider the continuous-time plant described by the fol-
lowing linear time-invariant model:

ẋp(t) = Axp(t) +Bu(t)

where xp ∈ Rnp represents the state of the plant, u ∈ Rm

represents its input, and t ∈ R+ is time. Matrices A and
B have appropriate dimensions and are constant.

It is considered that the input signal is calculated from
samples, as if coming from a digital controller, and obeys
the control law given by

u(t) = Kxp(tk) ∀t ∈ [tk, tk+1) , ∀k ∈ N

with tk, k ∈ N, being the sampling instants. u(t) is
supposed to be kept constant between two successive
sampling instants through a zero order holder.

Since we are considering an aperiodically sampled control,
the time between two successive samples δk = tk+1 − tk is
not necessarily constant. In particular, we assume that

0 < τ ≤ δk ≤ τ

The bounds τ and τ are supposed to be imposed by
constraints on the networked control implementation. As

stated in the introduction, they represent network condi-
tions that affect sampling rate e.g. a lag induced by the
communication protocol.

Note that assuming τ > 0 is sufficient to avoid Zeno effect.
The sequence of admissible sampling intervals Θ can be
formalized by the set below

Θ = {t = tk ∈ R+ : tk+1 = tk + δk, δk ∈ [τ , τ ] ,∀k ∈ N}
(1)

The closed loop system can thus be described by the
following system.

ẋp(t) = Axp(t) +BKxp(tk) ∀t ∈ [tk, tk+1)

If we want to describe it for all t ≥ 0 and a particular
sampling sequence θ ∈ Θ, the following impulsive model
can be considered:


ẋ(t) = Afx(t) ∀t /∈ θ; t 6= 0 (a)

x(t) = Jjx(t−) ∀t ∈ θ; t 6= 0 (b)

xp(0) = x0 t = 0 (c)

u(0) = Kx0 t = 0 (d)

(2)

where x(t) = [xp(t)′ u(t)′]
′ ∈ Rn, with n = np +m, is the

overall system state, and Af and Jj ∈ Rn×n are given as
follows

Af =

[
A B
0 0

]
, Jj =

[
I 0
K 0

]

3. CLOCKED-LYAPUNOV STABILITY THEOREM

The following Theorem provides conditions to assess the
stability of the hybrid system (2). (Hetel et al., 2016)

Theorem 1. Consider system (2) and denote τ = τk(t) =
t − tk, ∀t ∈ [tk, tk+1) ,∀k ∈ N the clock variable. Let c1,
c2 and c3 be positive constants, and V be a function such
that

c1||x||2 ≤ V (x, τ) ≤ c2||x||2

for all x ∈ Rn, τ ∈ [0, τ ] . Suppose that for any impulse
sequence θ ∈ Θ the corresponding solution x(t) to (2)
satisfies:

dV (x(t), τk(t))

dt
< −c3||x(t)||2 ∀t ∈ [tk, tk+1) , ∀k ∈ N

(3)
and

V (x(tk), τk(tk)) < V (x(t−k ), τk(t−k )) ∀k ∈ N (4)

then, the equilibrium point x = 0 of system (2) is globally
exponentially stable.

Note that for t ∈ [tk, tk+1), i.e., t /∈ θ∪{0}, it follows from
(1) that τk(t) ∈ [0, τ), and also that τk(tk) = 0. Moreover,
one has
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τ̇k(t) =
dτk(t)

dt
= 1 ∀t /∈ θ ∪ {0} (5)

Based on these facts the following corollary can be stated.

Corollary 1. If there exists a differentiable function
V̂ (x, τ) = x(t)′P (τ)x(t), P : [0, τ ] → Sn, P (τ) >
0, ∀τ ∈ [0, τ), such that

A′fP (τ) + P (τ)Af + Ṗ (τ) < 0, ∀τ ∈ [0, τ) (6)

and
J ′jP (0)Jj − P (τ) < 0, ∀τ ∈ [τ , τ ] (7)

are satisfied, then the equilibrium point x = 0 of system
(2) is globally exponentially stable.

Proof. From (5), τ̇ = 1 for t /∈ θ ∪ {0}. Hence, inequality
(3) in Theorem 1 is given by

dV̂ (x(t), τk(t))

dt
=
dV̂

dx
ẋ+

dV̂

dτ
τ̇

=ẋ′P (τk(t))x+ x′P (τk(t))ẋ+ x′Ṗ (τk(t))x < 0.

(8)

As τk(t) ∈ [0, τ ], and taking into account (2)-a, in order to
satisfy (8) it suffices that

A′fP (τ) + P (τ)Af + Ṗ (τ) < 0 ∀τ ∈ [0, τ)

which implies that exists c4 = λmax(A′jP (τ) + P (τ)Aj +

Ṗ (τ)), for τ ∈ [0, τ ], where λmax(·) is the maximum
eigenvalue of a matrix.

On the other hand, for t ∈ θ, we have τk(t) = 0 and thus,
from (2)-b, inequality (4) in Theorem 1 is satisfied if

J ′jP (0)Jj − P (τ) < 0 ∀τ ∈ [τ , τ ]

which concludes the proof.

4. STABILITY ANALYSIS WITH SATURATION

We consider now the case in which the control signal
is constrained in amplitude by means of a saturating
actuator. The actual plant input in this case is given as
follows

u(t) = sat(K(xp(tk))) (9)

where sat(·) : Rm → Rm is a vector valued saturation
function, i.e.

sat(v)(i) = sign(v(i))min(|v(i)|, 1) ∀i = 1, · · · ,m

With saturation in the controller output, the closed-loop
system (2) must be rewritten as follows:


ẋ(t) = Afx(t) ∀t /∈ θ; t 6= 0 (a)

x(t) = Ajx(t−) +Bjsat(Kjx(t−))
t ∈ θ;
t 6= 0

(b)

xp(0) = x0 t = 0 (c)

u(0) = sat(Kx0) t = 0 (d)

(10)

where Af , Aj ∈ Rn×n, Bj ∈ Rn×m and Kj ∈ Rm×n are
given as follows

Af =

[
A B
0 0

]
, Aj =

[
I 0
0 0

]
, Bj =

[
0
I

]
, Kj = [K 0]

Although the origin of a linear closed-loop system is
supposed to be either globally asymptotically stable or
not stable in the absence of input constraints, this is
not the case when saturation is present. In the case of
control systems with input saturation, the stability of an
equilibrium point is not necessarily global. In this case
it is important to characterize the region of attraction of
the origin and its estimates. The approach used here to
estimate the region of attraction of the origin can be found
in Tarbouriech et al. (2011).

Aiming to express stability conditions specifically for sys-
tem (10), the quadratic function V̂ given in Corollary 1
will be used to rewrite conditions (3) and (4) of Theorem 1
as matrix inequalities and therefore to formulate a convex
optimization problem to maximize the estimated region of
attraction of the system. With that in mind, the first step
concerns the treatment of the saturation term of system
(10). The idea in this case is to use a deadzone nonlinear-
ity and a corresponding generalized sector condition as a
mean of relaxing the problem. A deadzone function can be
defined from the saturation function given in (9) as follows

dz(v) = sat(v)− v
that is

dz(v)(i) = sign(v(i))
(
1−max(|v(i)|, 1)

)
(11)

Regarding the deadzone nonlinearity, the following lemma
can be stated:

Lemma 1. (Tarbouriech et al., 2011) Consider Kj , Gj ∈
Rm×n and define the set

S = {x ∈ Rn; |(Kj(i) −Gj(i))x| ≤ 1, i = 1, · · · ,m} (12)

If x ∈ S, then the deadzone nonlinearity dz(Kjx) satisfies
the following inequality

dz(Kjx)′T (dz(Kjx) +Gjx) ≤ 0 (13)

for any diagonal positive definite matrix T ∈ Rm×m.

In order to apply the property stated in Lemma 1 in the
stability analysis, saturation function in (10)-b must be
substituted by the deadzone function. Note that:

sat(Kj(x(t−k )) = Kj(x(t−k )) + dz(Kj(x(t−k ))) (14)

The substitution of (14) in (10)-b results in

x(t) =Ajx(t−) +Bjdz(Kj(x(t−k )) ∀t ∈ θ
Aj = Aj +BjKj

(15)

Next we aim to provide a condition to ensure the local
exponential stability of the origin of system (10) along with
an estimate of its region of attraction.

For this, we will consider the application of Theorem 1 to
system (10) with a quadratic Lyapunov candidate function
that depends affinely on τ , defined as follows:

V̂ (x(t), τk(t)) =

x′(t)P (τk(t))x(t) = x(t)′(P1 + τk(t)P2)x(t)
(16)

In order to state the main result, the following instrumen-
tal result is recalled
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Lemma 2. (Finsler, 1937) For y ∈ R2n+m, Λ = Λ′ ∈
R2n+m×2n+m and Γ ∈ Rn×2n+m with rank(Γ) < n. The
following statements are equivalent:

(1) y′Λy < 0 ∀y 6= 0 : Γy = 0
(2) ∃N ∈ R2n+m×n : Λ +NΓ + Γ′N ′ < 0

Based on Lemmas 1 and 2, and the conditions in Theorem
1 with the quadratic function (16), we can now state a
testable condition for the stability analysis of system (10).

Theorem 2. If there exist matrices P1 ∈ Sn, P2 ∈ Sn,
Gj ∈ Rm×n, T ∈ Rm×m and N ∈ R2n+m×n that satisfy
the following matrix inequalities:

Λ1 +NΓ + Γ′N ′ < 0 (17)

Λ2 +NΓ + Γ′N ′ < 0 (18)

A′fP1 + P1Af + P2 < 0 (19)

A′f (P1 + τP2) + (P1 + τP2)Af + P2 < 0 (20)

P1 > 0 (21)

P1 + τP2 > 0 (22)[
(P1 + τP2) (Kj(i) −Gj(i))

′

? 1

]
≥ 0 (23)

[
(P1 + τP2) (Kj(i) −Gj(i))

′

? 1

]
≥ 0, i = 1, · · · ,m (24)

with

Λ1 =

P1 0 0
? −P1 − τP2 −G′jT
? ? −2T


Λ2 =

P1 0 0
? −P1 − τP2 −G′jT
? ? −2T


Γ = [−I Aj Bj ]

(25)

then, for all initial conditions of system (10) in the ellipsoid
E(P (0)) = {x ∈ Rn : x′P1x ≤ 1}, the corresponding
trajectories converge exponentially to the origin ∀θ ∈ Θ.

Proof. Consider the function V̂ (x(t), τk(t)) defined in
(16). In order to satisfy condition (3) of Theorem 1 we
must ensure that:

˙̂
V (x(t), τk(t)) = x(t)′[(P1 + τk(t)P2)Af

+A′f (P1 + τk(t)P2) + P2]x(t) < 0,

∀t ∈ (tk, tk+1)

(26)

which is ensured if

(P1 + τk(t)P2)Af +A′f (P1 + τk(t)P2) + P2) < 0

∀t ∈ (tk, tk+1)
(27)

As τk(t) ∈ [0, τ) ,∀t ∈ [tk, tk+1) and (16) has affine
dependence on τk(t), a necessary and sufficient condition
to satisfy (3) is given by relations (19) and (20).

Let us now consider condition (4) in Theorem 1. This
condition evaluated on the system trajectories can be
stated as follows:[

x(tk)
x(t−k )

]′ [
P (0) 0
? −P (τk−1(tk))

] [
x(tk)
x(t−k )

]
< 0 (28)

for [x(tk)′ x(t−k )′ dz(Kj(x(t−k )))′]′ such that

[−I Aj Bj ]

 x(tk)
x(t−k )

dz(Kj(x(t−k )))

 = 0 (29)

Supposing now that x(t−k ) ∈ S, it follows from Lemma 1
that x(tk)

x(t−k )
dz(Kj(x(t−k )))

′ 0 0 0
? 0 −G′jT
? ? −2T

 x(tk)
x(t−k )

dz(Kj(x(t−k )))

 ≤ 0

(30)

Hence, applying the S-procedure and Lemma 2, it follows
that if

Λ(τk−1(tk)) +NΓ + Γ′N ′ < 0 (31)

with

Λ(τk−1(tk)) =

P (0) 0 0
? −P (τk−1(tk)) −G′jT
? ? −2T

 (32)

then (28) is verified.

Recalling now that τk−1(tk) ∈ [τ , τ), as condition (32) is
affine in τk−1(tk), a necessary and sufficient condition to
verify (32) is given by matrix inequalities (17) and (18).

Suppose now that x(0) = x(t0) ∈ E(P (0)). From (19) and
(20) it follows that x(t−1 ) ∈ E(P (t−1 )), since

x(t−1 )′P (τ0(t−1 ))x(t−1 ) < x(t0)′P (0)x(t0) ≤ 1

Now, from conditions (23) and (24), as x(t−1 )P (τ0(t−1 ))x(t−1 ) <
1, it follows that x(t−1 ) ∈ S. On the other hand, con-
ditions (23) and (24) ensure that E(P (τk−1(t−k ))) ⊂
S, ∀τk−1(t−k ) ∈ [τ , τ ]. Hence, condition (30) is indeed
verified and we conclude that

x(t1)′P (0)x(t1) < x(t−1 )P (τ0(t−1 ))x(t−1 ) ≤ 1

Thus, repeating the reasoning, it follows that x(t−k ) ∈
S ∀k ∈ N, and the proof is concluded.

5. OPTIMIZATION PROBLEM

For a given upper and lower bound on the sampling period,
a region of initial conditions for the closed loop system
with guaranteed asymptotic stability can be computed,
i.e., provided that x(0) ∈ E(P (0)), Theorem 2 guarantees
that the trajectory of x converges asymptotically to the
origin.

The idea is to maximize region E(P (0)) considering some
size criterion. The maximization of the minor axis of the
ellipsoid is adopted here as a criterion, leading to the
following optimization problem:

min
P1,P2,Gj ,N,ε

ε

subject to:

(17), (18), (19), (20),

(21), (22), (23), (24)

and P1 − εI < 0

(33)

The last constraint in problem (33) ensures that the
maximal eigenvalue of P1 is smaller than ε. Hence, the

DOI: 10.17648/sbai-2019-1115532737

http://dx.doi.org/10.17648/sbai-2019-111553


minimization of ε corresponds to the maximization of the
minor axis of the ellipsoid E(P (0)), since P (0) = P1.
Problem (33) is not convex since the product between Gj

and T , i.e. the constraints are not LMIs. Thus, a way of
overcoming this problem and obtaining LMI constraints
consists in fixing T . This limitation will be worked around
in a future study, but if we choose to deal with a SISO
problem, where m = 1, this is not a serious limitation
because T is a scalar. Thus, the optimal value of (33) can
be easily obtained by solving LMI problems over a grid in
T .

Remark: As in Fiacchini and Gomes da Silva Jr. (2018),
it is important to remark that the region E(P (0)) is defined
for x(t) = [xp(t)′ u(t)′]

′
. Observe that the variables xp(0)′

and u(0)′ are related by the following:

u(0) = sat(Kxp(0)) = sat(Kx0)

Therefore, a guaranteed set of plant initial states, i.e. the
set in the plant subspace such that x(0) = [xp(0)′ u(0)′]

′ ∈
E(P (0)) is actually described by the set

X =

{xp ∈ Rn;

[
xp

sat(Kxp)

]′
P1

[
xp

sat(Kxp)

]
≤ 1, τ ∈ [0, τ)}

(34)

which defines a piecewise quadratic region in Rn.

6. NUMERICAL EXAMPLE

Consider the system (10) with the following matrices:

A =

[
−0.3 1

1 −0.3

]
; B =

[
0
2

]
;

K = [−1.5 −1]

(35)

We assume that the intersampling times δk ∈ [0.05, 0.1].
Solving (33) on a grid on T , the minimum is obtained for
T = 0.1, leading to matrices:

P1 =

[
0.5348 0.3688 0.1225
0.3688 0.3915 0.1146
0.1225 0.1146 0.1111

]
(36)

P2 =

[−0.4604 −0.7215 −0.8192
−0.7215 −0.5089 −0.8726
−0.8192 −0.8726 −0.4589

]
(37)

The region of stability X is shown in Figure 1. As a com-
parison, in Figure 1 is also plotted the domain obtained
with the conditions proposed by Fiacchini and Gomes
da Silva Jr. (2018). It can be observed that for both
estimates, since X is defined from a piecewise quadratic
function, the region estimated is not necessarily convex.
One advantage of the method of this study, however, is
that the optimization problem is far simpler in terms of its
conditions. Finally, Figure 2 contains several trajectories
obtained from initial conditions at the boundary of region
X , while considering δk randomly chosen in the interval
δk ∈ [0.05, 0.1], showing the expected convergence of all
trajectories.

Figure 1. Region X obtained with the proposed method
(red) and region obtained with the algorithm of Fiac-
chini and Gomes da Silva Jr. (blue).

Figure 2. Trajectories starting at the boundary X , with
random sampling intervals

7. CONCLUSION

The new approach for stability analysis proposed by this
paper has been tested and also compared with another
current method, showing positive results. This study is
actually an early stage of an ongoing work considering
more generic clock dependent Lyapunov functions, namely
depending polynomially on the clock variable. This will
require for instance the use of SOS programming (Prajna
et al., 2004) to solve the stability conditions. A study in
this sense has been already conducted by Briat (2016)
without the saturation effect, which is not straightforward
to consider. With this generalization, it is expected to ob-
tain less conservative estimates of the region of attraction.
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