
The Heterogeneous Vehicle Routing Problem with Multiple Deliverymen and
Simultaneous Pickup and Delivery

Matheus Augusto Fernandes de Assunção
Instituto de Ciencias Matemáticas e de Computação – Universidade de São Paulo – Brasil

Avenida Trabalhador São-carlense, 400 - Centro- São Carlos
matheusfernandes@usp.br

Maristela Oliveira dos Santos
Instituto de Ciencias Matemáticas e de Computação – Universidade de São Paulo – Brasil

Avenida Trabalhador São-carlense, 400 - Centro- São Carlos
mari@icmc.usp.br

ABSTRACT
In this article, the Heterogeneous Vehicle Routing Problem with Multiple Deliverymen

and Simultaneous Pickup and Delivery (HVRPMDSPD) is discussed. This problem is inspired by
real world reverse logistics applications where a bottling company, using a fleet of different vehicles,
must deliver beverages to clients and also pick up empty cases of bottles to recycle. Moreover, it
is usually not possible to stop at every client’s location, and many clients might be close to one
another. This proximity allows the vehicles to park at certain areas from where the deliverymen can
serve the clients nearby on foot. Employing more deliverymen on a given route cuts down service
times, but also potentially raises operational costs. The HVRPMDSPD is modelled mathematically
as a Mixed Integer Linear Programming Model (MILP) problem. A constructive heuristic was
developed so as to provide an initial solution for the solver CPLEX, and the solutions obtained were
investigated.

KEYWORDS. Heterogeneous Vehicle Routing. Simultaneous Pickup and Delivery. Mathe-
matical Model. Constructive Heuristic.

Paper topics (L&T - Logı́stica e Transportes)

https://proceedings.science/p/106695?lang=pt-br

https://proceedings.science/p/106695?lang=pt-br


1. Introduction
The Vehicle Routing Problem (VRP) is an extension of the Traveling Salesman Problem

(TSP), where a salesman must find the shortest route that passes through every town he must visit.
The Vehicle Routing Problem can be defined as a decision problem where a fleet of vehicles must
deliver goods to clients while also traveling the shortest routes possible, starting and ending at a
depot. The goal can be to minimize operational costs, distance traveled, fleet size, operational time,
or even to maximize the number of clients served by the vehicles. Other constraints can also be
added to the problem, such as time windows (where a client can only be served within a specific
time period), maximum route time duration (for instance, an 8 hour shift), simultaneous pickup
and delivery, number of clients in each route, or even the order in which clients must be visited
[Braekers et al., 2016].

The VRPTWMD, or Vehicle Routing Problem with Time Windows and Multiple Deliv-
erymen, was first described in Pureza and Morabito [2010]. The VRPTWMD is a variation of the
VRP inspired by a real world application where a bottling company had to deliver drinks to a num-
ber of clients in a dense city environment. The company’s trucks, instead of stopping at each and
every client, would park near some clients and perform the deliveries to those clients on foot. This
was important because it might not always be possible to park at every clients’s location, due to
traffic and maneuverability. This meant that employing more deliverymen could impact delivery
times significantly. In that article, the authors demonstrate the advantage of incorporating multiple
deliverymen by altering the instances from Solomon [1987] and solving them using a Tabu Search
heuristic. The authors justify this approach with the real world example of a bottling company in
São Paulo, explaining that the company must adhere to the following planning constraints:

• availability of the vehicles in the fleet for each delivery period;

• maximum capacity of the available vehicles;

• stock of each of the products requested;

• time availability for the delivery of each product;

• delivery priority of each client;

• time windows in one or more clients.

In Pureza et al. [2012], an MILP model for the VRPTWMD is developed, and the problem
is solved using Tabu Search and Ant Colony Optimization. The mathematical model described in
this work is the main basis of the model described in Section 2. In Pureza et al. [2012], the fleet is
homogeneous (all vehicles have the same characteristics, such as load capacities, travelling speed,
and maximum crew size), and with either pickup or delivery for an entire route, exclusively, with
a maximum number of available employees for the entire fleet. The authors also explore classic
constraints, such as time windows, maximum cargo load, and maximum operational time. The
objective function described aims to minimize the number of vehicles, the number of deliverymen,
and the total distance traveled, in that order of importance. An example of a possible solution for
the VRPTWMD is presented in Figure 1. In Figure 1, a vehicle leaves the depot (triangle) and parks
at certain parking sites (red dots). Some of those parking sites have clients (black dots) nearby,
clusters of clients (dotted areas). The deliverymen serve the clients at that cluster, return to the
parking site, and move on to the next parking site in the route.

https://proceedings.science/p/106695?lang=pt-br

https://proceedings.science/p/106695?lang=pt-br


Figure 1: Possible solution for the VRPTWMD

Source: Pureza et al. [2012]

Several other works have studied this problem as well. Alvarez and Munari [2017] com-
bine Iterated Local Search and Large Neighborhood Search with an exact branch-price-and-cut
method to create a hybrid method to solve the VRPTWMD. In Souza Neto and Pureza [2016], the
authors model the MTVRPTWMD (Multiple Trip VRPTWMD), a variation of the VRPTWMD
where heterogeneous vehicles can be reused. Using a GRASP (Greedy Randomized Adaptive
Search Procedure) heuristic with the solver CPLEX, the authors use data from a real company and
generate solutions that reduced costs up to 37%. The works thus far assume that the client clusters
already exist. Identifying clusters was studied in De Grancy [2015] and De Grancy and Reimann
[2015], which both create the clusters and determine the vehicles’ routes for the VRPTWMD.

Simultaneous Pickup and Delivery, described in Min [1989], allows clients to have both
a delivery and a pickup demands. In this problem, each truck must leave the depot with all the
cargo it will deliver, and must return with all the cargo it has picked up. This type of routing
problem can be very useful in reverse logistics [Dethloff, 2001], where products can be delivered
and picked up again for recycling purposes. Reverse logistics refers to the flow of products from
the consumer back to the producer [Rogers and Tibben-Lembke, 2001]. This can be applied to
recycling problems, garbage collection, repairs, re-manufacturing (for instance, product recall), and
others. In the context of delivering beverages, the recycling problem fits perfectly, since there is not
only a demand to deliver cases of drinks, but also of picking up empty bottles which are taken back
to the factory for recycling.

The VRP with Simultaneous Pickup and Delivery is a well-established problem in the
literature, and many works have already studied different approaches to solving it, such as: Local
Search [Subramanian et al., 2010]; Particle Swarm [Kachitvichyanukul et al., 2009]; savings heuris-
tics [Çatay, 2010]; Ant Colony Optimization [Gajpal and Abad, 2009]. Berbeglia et al. [2007] report
on the general structure of the problems and detail a classification system for them.

This work explores the Heterogeneous Vehicle Routing Problem with Multiple Delivery-
men and Simultaneous Pickup and Delivery (HVRPMDSPD). The HVRPMDSPD is a variation of
the VRPTWMD where, aside from looking at time windows and multiple deliverymen, the fleet
of vehicles is heterogeneous and each client can have both pick up and delivery demands. The

https://proceedings.science/p/106695?lang=pt-br

https://proceedings.science/p/106695?lang=pt-br


HVRPMDSPD was modeled as a Mixed Integer Linear Programming problem, and a constructive
heuristic was developed to generate better initial solutions for the solver CPLEX. The model pre-
sented in this article is based on two main sources. The first one is the model in Pureza et al. [2012],
which presents the VRP with Time Windows and Multiple Deliverymen. The second source is the
work of Kachitvichyanukul et al. [2009], which describes a mathematical model for the VRP with
Simultaneous Pickup and Delivery.

This work is divided as follows: Section 2 presents the MILP model developed; Section
3 describes the constructive heuristic used to generate better initial solutions for the solver CPLEX;
Section 4 describes the computational experiments performed and shows their results; and finally
Section 5 presents some concluding remarks and future works.

2. The mathematical model for the HVRPMDSPD
This section describes the Mixed Integer Linear Programming model developed for this

work. This model aims to determine the routing strategy that serves all clients while minimizing
the number of vehicles used, the number of deliverymen in the route, and the total distance traveled
by the vehicles. The parameters of this model, its variables, constraints, and objective function are
described as follows.
Parameters

N : Number of clients plus the depot, with index 1 being the depot;
K: Number of vehicles available in the fleet;
Lk: Maximum number of deliverymen in a given vehicle k;
M : Number of deliverymen available for the company;
qi: Delivery demand of client i;
pi: Pickup demand of client i;
[ai, bi]: Time window to start the service at client i;
tvij : Travel time between clients i and j;
tsil Service time with l deliverymen at client i;
Qk: Maximum cargo load of a vehicle k;
Bijl: A large enough number;
ck1: Cost of using a vehicle k;
c2: Cost of employing a deliveryman in a vehicle;
c3: Cost associated with the distance traveled by each vehicle.

Moreover, tvij =
dij
vel , where dij is the euclidean distance between i and j and vel is the vehicles’

average speed, which is 1, as a convention. Bijl is defined as in Pureza et al. [2012]:

Bijl = max(bi + tsil + tvij − aj , 0) (1)

tsil is also defined with a modification of the equation in Pureza et al. [2012], which guarantees that
the service time is directly proportional to the cargo being delivered and picked up, and inversely
proportional to the number of deliverymen, where rs is the rate of service of a deliveryman, which
is 2 by convention:

tsil =
1

l
min((qi + pi) ∗ rs, b1 −max(ai, tv1i)− tvi1) (2)

https://proceedings.science/p/106695?lang=pt-br

https://proceedings.science/p/106695?lang=pt-br


Variables

xijlk:

{
1, if vehicle k leaves client i and goes to j with l deliverymen;
0, otherwise.

yilk: total cargo in vehicle k, with l deliverymen, as it leaves client i.
til: instant in which service in client i begins with l deliverymen.

Flow constraints
Constraints (3), (4), and (5) guarantee the flow of vehicles between each client, while also ensuring
that every client is served. Constraints (6) state that not every vehicle has to be used in the solution.

N∑
i=1
i 6=j

Lk∑
l=1

K∑
k=1

xijlk = 1, 2 ≤ j ≤ N ; (3)

N∑
j=1
j 6=i

Lk∑
l=1

K∑
k=1

xijlk = 1, 2 ≤ i ≤ N ; (4)

N∑
j=1
j 6=i

xijlk =
N∑
j=1
j 6=i

xjilk, 1 ≤ i ≤ N, 1 ≤ l ≤ Lk, 1 ≤ k ≤ K; (5)

N∑
j=2

Lk∑
l=1

x1jlk ≤ 1, 1 ≤ k ≤ K; (6)

Time constraints
Constraints (7) establish the beginning of the service in client j if a vehicle k with l deliverymen
travels from i to j, taking into account the travel time between i and j and the service time in i with
l deliverymen.

tjl ≥ til + (tsil + tvij)xijlk −Bijl ∗ (1− xijlk),

2 ≤ i ≤ N, 1 ≤ j ≤ N, i 6= j, 1 ≤ l ≤ Lk, 1 ≤ k ≤ K; (7)

Load constraints
Constraints (8) and (9) update the cargo in vehicle k after leaving client j, coming from client i, with
l deliverymen, calculating the current cargo, taking into account the pickup and delivery demands
of client j. Constraints (10) state that the vehicle k must leave the depot with all the cargo to be
delivered during its route.

yjlk ≥ yilk + (pj − qj)xijlk −Qk(1− xijlk),

1 ≤ i ≤ N, 2 ≤ j ≤ N, i 6= j, 1 ≤ l ≤ Lk, 1 ≤ k ≤ K; (8)

https://proceedings.science/p/106695?lang=pt-br

https://proceedings.science/p/106695?lang=pt-br


yjlk ≤ yilk + (pj − qj)xijlk +Qk(1− xijlk),

1 ≤ i ≤ N, 2 ≤ j ≤ N, i 6= j, 1 ≤ l ≤ Lk, 1 ≤ k ≤ K; (9)

y1lk =
N∑
i=1

N∑
j=1
i 6=j

qixijlk, 1 ≤ l ≤ Lk, 1 ≤ k ≤ K; (10)

Deliverymen constraint
Constraint (11) ensures that the total number of deliverymen to leave the depot does not exceed the
number of deliverymen available.

N∑
j=2

Lk∑
l=1

K∑
k=1

lx1jlk ≤M (11)

Variable Domains
Constraints (12), (13), (14), (15), define the domains of the variables in the model. Constraints (16)
also limits the beginning of service at each client i by the time window of that client.

xijlk ∈ {0, 1}, 1 ≤ i ≤ N, 1 ≤ j ≤ N, i 6= j, 1 ≤ l ≤ L, 1 ≤ k ≤ K; (12)

yilk ∈ Z+, 1 ≤ i ≤ N, 1 ≤ l ≤ L, 1 ≤ k ≤ K; (13)

max{pi − qi, 0} ≤ yilk ≤ Qk, 1 ≤ i ≤ N, 1 ≤ l ≤ L, 1 ≤ k ≤ K; (14)

til ∈ R+, 1 ≤ i ≤ N, 1 ≤ l ≤ L; (15)

ai ≤ til ≤ bi, 1 ≤ i ≤ N, 1 ≤ l ≤ L; (16)

Thus, the MILP model for the HVRPMDSPD can be written as follows:

min Z = ck1

N∑
j=2

Lk∑
l=1

K∑
k=1

x1jlk + c2

N∑
j=2

Lk∑
l=1

K∑
k=1

lx1jlk + c3

N∑
i=1

N∑
j=1
i 6=j

Lk∑
l=1

K∑
k=1

dijxijlk (17)

subject to: (3) ... (16)

The objective function (17) aims to minimize the total operational cost, where ck1 is the
cost of using a vehicle k, c2 is the cost of employing a deliveryman, and c3 is the cost associated
with the distance traveled.

3. Constructive heuristic
In order to generate initial solutions, a constructive algorithm based on the method used in

Alvarez and Munari [2016] was developed. This method constructs each route by greedily adding
to a given route the client that is furthest away from the depot, maintaining feasibility. The pseudo-
code for this constructive method is shown in Algorithm 1. The results obtained using this strategy
will be discussed in Section 4.

https://proceedings.science/p/106695?lang=pt-br

https://proceedings.science/p/106695?lang=pt-br


Algorithm 1 Constructive algorithm
1: procedure CONSTRUCTROUTES

2: DistList⇐ OrderClientsFurthestAway()
3: Vis⇐ 1 . Initializes Vis with the depot
4: for v from 1 to NumV do . For every vehicle in the fleet
5: route[v][0]⇐ 1 . The first value refers to the number of deliverymen in that route
6: for each NewCl in DistList do
7: if NewCl is not in Vis then . If client NewCl hasn’t been visited yet
8: FinalPos⇐ null
9: NumDel⇐ L[v] + 1 . Maximum number of deliverymen in vehicle v

10: Savings⇐MaxInt
11: for j from 0 to length(route[v]) do
12: fact, del⇐ VerifyFeasibility(NewCl,j,route[v]) . del - deliverymen required
13: if fact = True then
14: pos⇐ j
15: prev⇐ 1
16: if pos 6= 0 then
17: prev⇐ route[v][pos]
18: next⇐ 1
19: if pos 6= len(route[v] -1) then
20: next⇐ route[v][pos + 1]
21: sv⇐ dist[prev][NewCl] + dist[NewCl][next] - dist[prev][next]
22: if sv < Savings or del < NumDel then
23: Savings⇐ sv
24: FinalPos⇐ pos
25: NumDel⇐ del
26: if FinalPos 6= null then . Client i can successfully be added to the route
27: route[v]⇐ NewRoute (route[v],NumDel, FinalPos, NewCl)
28: Vis⇐ Vis ∪ NewCl
29: return route

Algorithm 1 details the steps taken in order to construct a solution for the HVRPMDSPD.
In Line 2, a function called OrderClientsFurthestAway() returns a list of clients sorted by their
distance to the depot. Thus, the first client in DistList is the one furthest away from the depot.
This ensures the order in which the clients are inserted in the routes. The for loop in Line 4 looks
at every individual vehicle and constructs their routes. It is important to note that the vehicles are
ordered from least costly, to most costly. This means that the constructive heuristic tries to fill up the
cheaper vehicles first, and only later looks at the more expensive ones. Line 5 ensures that the first
element in route[v] refers to the number of deliverymen in that route. This information is crucial
for the feasibility verification in Line 12. The for loop in Line 11 is called whenever a client has not
been assigned to a route yet. This loop attempts to find the best position in the route to insert said
client, if that position exists. Line 12 calls a function which verifies whether the new client NewCl
can be inserted in position j, and, if so, how many deliverymen are necessary for that insertion to be
feasible. Line 21 calculates the cost in total distance traveled of inserting client NewCl in position
j. This approach is inspired by the work of Clarke and Wright [1964]. Line 22 decides whether
this insertion is the new best position possible to insert client NewCl. The criterion is that this new
insertion position should either provide better savings or use fewer deliverymen. This step ensures
that, by the end of the for loop, the method will have found the best position to insert NewCl, if that

https://proceedings.science/p/106695?lang=pt-br

https://proceedings.science/p/106695?lang=pt-br


position exists. Finally, if an insertion position has been found, Line 27 updates the route, and Line
28 updates the list of clients that have already been visited, so they may not be considered again in
other routes.

4. Computational experiments
In order to validate the model and test the constructive heuristics, instances with 25, 50,

and 100 clients were solved using the solver CPLEX 12.8 with a Python program implementing the
model described in Section 2.

The problems were solved using a machine with 2 processors Intel Xeon E5-2680v2 with
2.8 GHz 10 cores and 128 GB DDR3 1866MHz of memory, with a time limit of 30 minutes. The
instances solved were the rdp101, rdp102, rdp103, rdp104, and rdp105 instances with 100 clients,
and the rcdp25, rcdp50, with 25 and 50 clients each [Wang and Chen, 2012]. These instances
are an adaptation of instances in Solomon [1987], with simultaneous pickup and delivery and time
windows. In order to calculate the service time at each client, an extension of the calculation
in Pureza et al. [2012] was used, as shown in Equation 2. The parameters used were based on
parameters established in the literature, M = N − 1, vel = 1, rs = 2, e K = N − 1, where N is
the number of clients plus the depot.

The costs associated with using a vehicle vary with the type of vehicle, and are shown in
Tables 1 and 2. In Pureza et al. [2012], c1 = 1, with a homogeneous fleet, c2 = 0.1, the cost of using
a deliveryman, and c3 = 0.0001, the cost of the distance traveled. In this article, since the fleet is
heterogeneous, c2 = 0.1 ∗ c01, or 0.1 times the cost of the cheapest vehicle, and c3 = 0.0001 ∗ c01,
or 0.0001 times the cost of the cheapest vehicle. Moreover, in order to minimize the number of
variables and constraints, a simple pre-processing was used. In this pre-processing, the variables
xijlk describing an arc where ai + tsil + tvij > bj were not created, because those arcs are not
feasible and break the time windows.

Additionally, the types of vehicles were defined as in Liu and Shen [1999]. In that work,
for every set of Solomon instances [Solomon, 1987] R1 and R2, C1 and C2, RC1 and RC2, different
vehicle types were defined, with varying cargo and costs. For every set of instances, the authors also
determined three costs variations. These variations consist of one with high cost (type a), medium
cost (type b), and low cost (type c). Tables 1 and 2 present the vehicle and cost types for the R1 and
RC1 instances (studied in this article), varying on a maximum number of deliverymen, maximum
load, and alternative costs.

Table 1: Vehicle types for instances R1

Costs

Type L Load R1a R1b R1c

A 1 30 50 10 5
B 2 50 80 16 8
C 2 80 140 28 14
D 3 120 250 50 25
E 3 200 500 100 50

Table 2: Vehicle types for instances RC1

Costs

Type L Load RC1a RC1b RC1c

A 1 40 60 12 6
B 2 80 150 30 15
C 2 150 300 60 30
D 3 200 450 90 45

Table 3 shows the results obtained without the initial solutions provided by the construc-
tive heuristic within the time limit, with the values of the objective function, the number of vehicles
and deliverymen and total distance traveled, as well as total execution time and the gap. The results

https://proceedings.science/p/106695?lang=pt-br

https://proceedings.science/p/106695?lang=pt-br


Table 3: Results found by the solver CPLEX without the constructive heuristic
Instance Class Objective Function No Vehicles No Deliverymen Total Distance Time (s) GAP

rcdp2501 a 1115.57 11 15 928.88 TL 21.89

rcdp2501 b 229.03 10 15 857.11 TL 23.90

rcdp2501 c 127.77 12 17 949.60 TL 31.80

rcdp2504 a 2411.59 9 16 932.47 TL 99.93

rcdp2504 b 374.26 8 16 884.44 TL 99.91

rcdp2504 c 201.43 8 15 716.55 TL 99.91

rcdp2507 a 2136.20 12 20 1033.55 TL 96.78

rcdp2507 b 473.83 9 19 859.70 TL 94.32

rcdp2507 c 234.58 10 20 971.26 TL 97.10

rcdp5001 a 2632.56 22 32 1759.54 TL 36.40

rcdp5001 b 452.13 21 30 1775.88 TL 26.58

rcdp5001 c 232.72 22 31 1859.02 TL 30.12

show that without the constructive heuristic, the solver was unable to find any solutions for instances
rcdp5004 and rcdp5007, with 50 clients. It was also unable to find solutions for any instance with
100 clients in the time limit established. Table 4 presents the results for the same instances using
the constructive heuristic. All executions ran until the time limit of 30 minutes.

Table 4: Results found by the solver CPLEX using the constructive heuristic
Instance Class Objective Function No Vehicles No Deliverymen Total Distance Time (s) GAP

rcdp2501 a 1109.55 11 14 924.65 TL 18.14

rcdp2501 b 223.15 11 15 959.83 TL 21.90

rcdp2501 c 121.17 11 16 944.32 TL 28.08

rcdp2504 a 1110.44 11 14 1074.00 TL 99.84

rcdp2504 b 222.08 11 14 1068.21 TL 99.84

rcdp2404 c 111.05 11 14 1085.90 TL 99.84

rcdp2507 a 1441.40 13 19 1233.26 TL 95.27

rcdp2507 b 255.78 12 17 1150.11 TL 94.65

rcdp2507 c 137.50 12 18 1161.41 TL 90.21

rcdp5001 a 2490.09 23 33 2015.78 TL 34.70

rcdp5001 b 496.86 23 32 2046.93 TL 34.54

rcdp5001 c 235.71 21 31 1850.81 TL 30.52

Some solutions found by the solver CPLEX without a constructive heuristic seem better
than the ones found with the heuristic. For instance rcdp2507b, the solver by itself found a solution
with 9 vehicles and 19 deliverymen, whereas the solution found with the heuristic start used 12
vehicles and 17 deliverymen. However, analyzing strictly the objective function, it is clear that the
constructive heuristic helps the solver find better solutions overall, considering the trade-off between
using more vehicles and employing less deliverymen. In fact, the results using the constructive
heuristic are only worse in two instances, rcdp5001b, and rcdp5001c, and, even then, the results are

https://proceedings.science/p/106695?lang=pt-br

https://proceedings.science/p/106695?lang=pt-br


only worse at most by a margin of 10%, as can be seen in Tables 6 and 7. Conversely, the results
obtained without using the constructive heuristic consistently provide a worse trade-off between the
number of vehicles and the number of deliverymen.

Moreover, the fact that, without the constructive heuristic, the solver could not find so-
lutions for most of the instances before the time limit shows that the heuristic is useful, especially
for large-scale instances. Table 5 shows the results obtained for the instances for which the solver
CPLEX without the constructive heuristic could not find any solutions within the time limit.

Table 5: Instances for which the solver could not find solutions without the heuristic within the time limit
Instance Class Objective Function No Vehicles No Deliverymen Total Distance Time (s) GAP

rcdp5004 a 2166.82 21 29 2136.38 TL 99.91

rcdp5004 b 433.39 21 29 2155.27 TL 99.91

rcdp5004 c 216.69 21 29 2145.77 TL 99.91

rcdp5007 a 2160.92 21 28 2153.88 TL 99.89

rcdp5007 b 432.18 21 28 2153.88 TL 99.89

rcdp5007 c 216.09 21 28 2156.24 TL 99.89

rdp101 a 3797.12 46 68 3424.48 TL 32.92

rdp101 b 750.33 45 69 3332.27 TL 32.10

rdp101 c 379.71 46 68 3424.48 TL 100.00

rdp102 a 3503.00 44 65 3599.14 TL 100.00

rdp102 b 700.60 44 65 3599.14 TL 100.00

rdp102 c 350.30 44 65 3599.14 TL 100.00

rdp103 a 3187.77 42 58 3554.44 TL 98.17

rdp103 b 637.55 42 58 3554.44 TL 98.17

rdp103 c 318.78 42 58 3554.44 TL 98.17

rdp104 a 3193.08 42 59 3616.17 TL 98.18

rdp104 b 638.62 42 59 3616.17 TL 98.18

rdp104 c 319.31 42 59 3616.17 TL 98.18

rdp105 a 3343.11 43 61 3622.60 TL 100.00

rdp105 b 668.62 43 61 3622.60 TL 100.00

rdp105 c 334.31 43 61 3622.60 TL 100.00

Table 6: Comparison between the objective values obtained with and without the constructive heuristic

rcdp2501a rcdp2501b rcdp2501c rcdp2504a rcdp2504b rcdp2504c rcdp2507a rcdp2507b rcdp2507c

Cplex 1115.57 229.03 127.77 2411.59 374.26 201.43 2136.20 473.83 234.58

Cplex and heuristic 1109.55 223.15 121.17 1110.44 222.08 111.05 1441.40 255.78 137.50

Comparison -0.54% -2.57% -5.17% -53.95% -40.66% -44.87% -32.53% -46.02% -41.39%

https://proceedings.science/p/106695?lang=pt-br

https://proceedings.science/p/106695?lang=pt-br


Table 7: Comparison between the objective values obtained with and without the constructive heuristic

rcdp5001a rcdp5001b rcdp5001c

Cplex 2632.56 452.13 232.72

Cplex and heuristic 2490.09 496.86 235.71

Comparison -5.41% +9.89% +1.29%

5. Concluding remarks
This article aimed to describe, define, model, and provide solutions for Heterogeneous Ve-

hicle Routing Problem with Multiple Deliverymen and Simultaneous Pickup and Delivery (HVRP-
MDSPD). In this problem, a company must pick up and deliver goods at clients’ locations during
specific time windows. Some clients can also be close to another, thus, instead of parking at each
client’s location, the vehicle stops at a parking site nearby, from where the deliverymen inside per-
form the service on foot, to cut down on service times.

A Mixed Integer Linear Programming model for the HVRPMDSPD was developed, aim-
ing to minimize operational costs of using vehicles, employing deliverymen, and the total distance
travelled. Instances for the VRP with Simultaneous Pickup and Delivery with Time Windows from
Wang and Chen [2012] were combined with Heterogeneous VRP instances from Liu and Shen
[1999] and solved by the solver CPLEX. The HVRPMDSPD has never been discussed or solved
in the literature, and thus there are no results available for comparison and validation. In order to
provide better starting solutions, a constructive heuristic based on the work of Alvarez and Munari
[2016] was developed and its solutions were given to the solver CPLEX. A comparison between
the results with and without using the constructive heuristic was performed so as to validate this
heuristic. Results showed that using the constructive heuristic the solver CPLEX could find better
solutions than without using it. Additionally, the constructive heuristic allowed the solver to de-
termine solutions for other instances with 50 clients and instances with 100 clients for which no
solution was found before the time limit without the heuristic.

In the future, a more complete meta-heuristic, such as the Iterated Local Search, could
be explored, rather than just a constructive heuristic. Other characteristics for the problem can be
investigated, such as maximizing the number of clients served, considering multiple trips, priorities
between clients, or even multiple depots.

Acknowledgements
The authors would like to thank CNPq, CAPES (PROEX-10545229/M), and CeMEAI-

CEPID (FAPESP No. 2013/07375-0) for the financial support received.

References
Alvarez, A. and Munari, P. (2017). An exact hybrid method for the vehicle routing problem with

time windows and multiple deliverymen. Computers & Operations Research, 83:1–12.

Alvarez, D. A. and Munari, P. (2016). Abordagens metaheurı́sticas para o problema de roteamento
de veı́culos com janelas de tempo e múltiplos entregadores. Gestão e Produção, 23:279–293.

Berbeglia, G., Cordeau, J.-F., Gribkovskaia, I., and Laporte, G. (2007). Static pickup and delivery
problems: a classification scheme and survey. Top, 15(1):1–31.

Braekers, K., Ramaekers, K., and Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State
of the art classification and review. Computers & Industrial Engineering, 99:300–313.

https://proceedings.science/p/106695?lang=pt-br

https://proceedings.science/p/106695?lang=pt-br


Çatay, B. (2010). A new saving-based ant algorithm for the vehicle routing problem with simulta-
neous pickup and delivery. Expert Systems with Applications, 37(10):6809–6817.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of
delivery points. Operations research, 12(4):568–581.

De Grancy, G. S. (2015). An adaptive metaheuristic for vehicle routing problems with time windows
and multiple service workers. J. UCS, 21(9):1143–1167.

De Grancy, G. S. and Reimann, M. (2015). Evaluating two new heuristics for constructing customer
clusters in a vrptw with multiple service workers. Central European Journal of Operations Re-
search, 23(2):479–500.

Dethloff, J. (2001). Vehicle routing and reverse logistics: the vehicle routing problem with simulta-
neous delivery and pick-up. OR-Spektrum, 23(1):79–96.

Gajpal, Y. and Abad, P. (2009). An ant colony system (acs) for vehicle routing problem with
simultaneous delivery and pickup. Computers & Operations Research, 36(12):3215–3223.

Kachitvichyanukul, V. et al. (2009). A particle swarm optimization for the vehicle routing problem
with simultaneous pickup and delivery. Computers & Operations Research, 36(5):1693–1702.

Liu, F.-H. and Shen, S.-Y. (1999). The fleet size and mix vehicle routing problem with time win-
dows. Journal of the Operational Research society, 50(7):721–732.

Min, H. (1989). The multiple vehicle routing problem with simultaneous delivery and pick-up
points. Transportation Research Part A: General, 23(5):377–386.

Pureza, V. and Morabito, R. (2010). Designando entregadores extras no roteamento de veı́culos
com janelas de tempo. Anais do XLII Simpósio Brasileiro de Pesquisa Operacional.

Pureza, V., Morabito, R., and Reimann, M. (2012). Vehicle routing with multiple deliverymen:
Modeling and heuristic approaches for the vrptw. European Journal of Operational Research,
218(3):636–647.

Rogers, D. S. and Tibben-Lembke, R. (2001). An examination of reverse logistics practices. Journal
of business logistics, 22(2):129–148.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time
window constraints. Operations research, 35(2):254–265.

Souza Neto, J. F. d. and Pureza, V. (2016). Modeling and solving a rich vehicle routing problem for
the delivery of goods in urban areas. Pesquisa Operacional, 36(3):421–446.

Subramanian, A., Drummond, L. M. d. A., Bentes, C., Ochi, L. S., and Farias, R. (2010). A parallel
heuristic for the vehicle routing problem with simultaneous pickup and delivery. Computers &
Operations Research, 37(11):1899–1911.

Wang, H.-F. and Chen, Y.-Y. (2012). A genetic algorithm for the simultaneous delivery and pickup
problems with time window. Computers & Industrial Engineering, 62(1):84–95.

https://proceedings.science/p/106695?lang=pt-br
Powered by TCPDF (www.tcpdf.org)

https://proceedings.science/p/106695?lang=pt-br
http://www.tcpdf.org

