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RESUMO
Previsão de demanda energética é uma ferramenta estratégica para companias de distribui-

ção devido à necessidade de contratar o montante de uso dos sistemas de transmissão e distribuição.
Entretanto, a maior parte da literatura é focada em previsão e não em simulação. A geração de
cenários futuros é essencial para capturar a incerteza inerente ao processo e para permitir um frame-
work de decisão com aversão a risco. O primeiro artigo dessa série de dois artigos propõe uma
metodologia para simular cenários de consumo de energia de longo prazo e baixa frequência através
de modelos em espaço de estados. Um pacote open-source em Julia contendo a implementação
da modelagem em espaço de estados para séries temporais, o filtro de Kalman e a estimação por
máxima verossimilhança é disponibilizado. Finalmente, um estudo de caso com dados reais do
sistema elétrico brasileiro é apresentado.

PALAVRAS CHAVE. Demanda de energia. Modelos em espaço de estados. Simulação Monte
Carlo.

ABSTRACT
Energy demand prediction is a strategic tool for distribution companies due to the need

to contract the amount of use of the transmission and distribution systems. However, most of
the literature focuses on forecasting rather than simulation. The generation of future scenarios is
essential to capture the inherent uncertainty of the process and to allow for a risk-averse decision
making framework. The first of this two-paper series proposes a methodology to simulate long-
term, low-frequency energy consumption scenarios through state-space models. An open-source
Julia package containing the implementation of the time series state-space modeling, Kalman filter
and maximum likelihood estimation is made available. Finally, a case study with real data from the
Brazilian power system is presented.
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1. Introduction
Network expansion is a fundamental part of the planning of power systems. Expansion

occurs at all system levels – namely, generation, transmission, and distribution – and is essentially
attached to time-variant signals, such as energy consumption. Furthermore, agents that partake in
the use of the transmission and distribution systems must pay for the usage of such infrastructure.
Consequently, there is a systematic need to predict the behavior of energy consumption and to
correctly characterize its uncertainty and to simulate the usage of the system. Moreover, in general,
the transmission system cost allocation is based on a regulated tariff for the maximum value of
power consumption. The Brazilian case is an example of such system.

In Brazil, the transmission system cost is allocated through long-term demand contracts,
whose amounts are monthly cleared. The contract clearing is based on the maximum power im-
ported in each interconnection bus of each distribution company with the transmission network and
contracted amount. The objective of the distribution company is to minimize contracting expenses
by precisely balancing between the benefit of reducing the direct contract cost while avoiding pay-
ing high penalties for exceeding contract amounts. This means low-frequency signals, such as
monthly data on energy consumption, are not good predictors for the MUST, since these don’t offer
much information on high-frequency demand peaks. It also presents a further difficulty due to the
typical power system structure, which contains a large number of low-level buses at the distribution
level. These low-level buses, when added together, are ultimately responsible for the total amount
of energy being transmitted at the higher levels. Because the moment of maximum demand at the
high-level buses is not necessarily the moment when low-level buses are at their maximum, predict-
ing monthly maximum values of the low-level buses and then adding them together won’t suffice –
it is necessary to account for all low-level buses in hourly frequency in order to accurately predict
the MUST. The first paper of this two-paper work (the other being Bodin et al. [2018]) will deal
with the long-term, low-frequency modeling.

Various studies have been conducted to investigate the modeling and forecasting of energy
consumption, both in long and short terms. Methodologies range from classic ARIMA models (Box
et al. [2015]) to state-space models (Durbin and Koopman [2012]) and neural networks (Park et al.
[1991]), as well as hybrid models (Zhang [2003], Liu et al. [2014]). In the long-term framework,
Hamzacebi and Es [2014] and Hsu and Chen [2003] presented grey prediction models to forecast
yearly power demand and electricity consumption in Turkey and Taiwan, respectively. Also in
Taiwan, Pao [2009] employed a state-space model to investigate monthly electricity consumption
and its relation with economic growth. Similarly, Hunt et al. [2003] utilized a state-space model
to study the long-term trend and seasonality of energy demand in the United Kingdom. Tsekouras
et al. [2007] proposed a non-linear multivariate regression model for midterm energy forecasting
and applied it to the Greek power system.

As seen above, there is plenty of literature concerning the forecasting of long-term en-
ergy consumption. On the other hand, the liaison between the long and short-term frameworks
is generally unexplored and strongly connected to the problem of contracting the optimal MUST.
Nonetheless, it is challenging to accurately predict the hourly behavior of demand months ahead
through either long or short-term models, as the problem involves high-dimensional data in high
frequency. A possible strategy is to reduce the dimension and frequency of the original problem,
simulate low-frequency signals that dictate the long-term behavior of the multiple signals, and then
disaggregate the low-frequency signal back into the high-dimensional and high-frequency frame-
work. Therefore, a methodology is needed in order to successfully connect long and short-term
variability in energy consumption, both in a macro environment, such as the total monthly energy
consumed in a region, and micro environments, such as the hourly demand occurring in low-level
buses. This paper focuses on the first part, while the companion paper Bodin et al. [2018] focuses
on the second.

Furthermore, the vast majority of the literature and the industry deals with forecasting,
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which only provides a prediction of the mean electricity consumption. As opposed to forecasting,
the simulation of future scenarios allows the description of the uncertainty in the process, the char-
acterization of a probability distribution and the implementation of a risk-averse framework. This
work proposes a methodology to simulate long-term energy consumption scenarios using histor-
ical data and exogenous climatic and economic variables. Additionally, an initial version of the
Julia package StateSpaceModels.jl by Saavedra and Souto [2018], utilized in the studies
presented in this paper and currently under work, is made publicly available on GitHub.

The remainder of this paper is organized as follows. Section 2 contains the problem
description and utilized notation. Section 3 presents the state-space model employed in this paper.
Section 4 describes the process of estimation and simulation done in order to obtain the future
scenarios. A case study with real data from the Brazilian system is presented in Section 5. Section
6 raises the relevant conclusions. Finally, the high-frequency modeling, starting from the monthly
energy consumption scenarios obtained in this paper, which represents the second stage of this
methodology, comprises the companion paper (Bodin et al. [2018]).

2. Problem description
The first stage of the methodology presented in this work consists of generating monthly

scenarios of energy consumption, which will be later used as inputs in the high-frequency model.
Energy consumption series have several stylized facts which must be considered in the model. To
name a few, these series are often non-stationary and contain a well-defined trend, due to population
and economic growth over time; they also generally present yearly seasonality, which is caused
mostly by the variation of temperature and precipitation patterns. Let Em, for m = 1, ...,M ,
denote the energy consumption during month m. The objective is to obtain scenarios

EM+k(ω), k = 1, ...,K, ω ∈ Ω, (1)

where M +K represents the last simulated month and Ω is the set of simulated scenarios. In order
to do so, a state-space model (Durbin and Koopman [2012]), fully described in the next section, is
employed. The model utilizes historical consumption data as well as exogenous variables. These
explanatory variables can range from economic indices, such as GDP and employment rates, to
climatic data such as temperature and precipitation.

3. Structural model with exogenous variables
State-space models represent a set of time series models in which the evolution of the

process is assumed to be determined by a set of unobserved vectors α1, ..., αm, which are called
the states, or collectively called the state. These states can often have a physical interpretation,
representing behaviors such as trend and seasonality. Our problem can be formulated in the linear
Gaussian state-space form as

Em = Zαm + εm, εm ∼ N(0, H), (2)

αm+1 = Tαm +Rηm, ηm ∼ N(0, Q), m = 1, ...,M, (3)

where αm is the state vector, matrices Z, T , R, H and Q may contain unknown, fixed parameters
present in vector ψ, which will be estimated, and error terms εm and ηm are assumed to be serially
independent and independent of each other. In our case, Em is univariate, so matrix H reduces to a
single element σ2ε . Equations (2) and (3) are called observation equation and state equation, respec-
tively. The observation equation describes how the state αm contributes to the actual observation
Em, while the state equation describes the evolution of the state over time. Matrices Z, T and R
can be time-varying in a more general framework, but in practical cases they are generally constant.

In this work, we utilize a specific instance of state-space models, usually called the basic
structural model with exogenous variables. A state-space time series model is generally called a
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structural model in the literature when its components have well-defined, physical interpretations
(Harvey [1990]). Under this framework, one can write Equation (2) as

Em = µm + γm + θ>Xm + εm, (4)

where µm is a slowly varying component called the trend, γm is a periodic component with fixed
periodicity called the seasonal, Xm is a set of exogenous variables, θ is a vector of parameters
related to the exogenous variables, and εm is referred to as the irregular or error component.

The stochastic trend is formulated in the state equation in the following manner:

µm+1 = µm + νm + ξm, ξm ∼ N(0, σ2ξ ), (5)

νm+1 = νm + ζm, ζm ∼ N(0, σ2ζ ). (6)

where νm is called the slope, while the stochastic seasonal component can be formulated as follows:

γm+1 = −
p−1∑
j=1

γm+1−j + χm, χm ∼ N(0, σ2χ), (7)

where p represents the periodicity of the seasonal component, which means the sum of seasonals
over a period must be zero, except for an error. Note that all components change stochastically
over time, and therefore add further flexibility to this model in capturing time series variations.
If variances σ2ε , σ

2
ξ , σ

2
ζ , σ

2
χ are null, then the model reduces to a deterministic process with well-

defined trend, slope and seasonality.
Naturally, it is necessary to formulate Equations (4)–(7) in the state-space matricial form

so that they can be inserted in the framework of Equations (2) and (3). The necessary manip-
ulations, as well as the estimation and simulation functions, are implemented in the Julia pack-
age StateSpaceModels.jl by Saavedra and Souto [2018], which we make publicly available
on GitHub. The package also contains an implementation of the square-root Kalman filter (Van
Der Merwe and Wan [2001]), square-root smoother, parallelized maximum likelihood estimation
(Scholz [1985]), and Monte Carlo simulation.

4. Estimation and simulation
The model contemplated in Equations (2)–(7) depends on a set of hyperparameters, namely

the variance of the observation error (σ2ε ), and each of the variances associated with the errors of
the states (σ2ξ , σ

2
ζ , σ

2
χ). Therefore, for the proposed model, ψ contains the following elements:

ψ =
[
σ2ε σ2ξ σ2ζ σ2χ

]>
. (8)

Estimation of the fixed parameters is done via maximum likelihood (MLE, Scholz [1985]).
Additionally, given that we’re dealing with a state-space model, the use of the Kalman filter (Bishop
et al. [2001]) is necessary. In particular, we utilize the square-root Kalman filter (Van Der Merwe
and Wan [2001]) in our implementation due to its advantages in the state-space time series frame-
work, such as guaranteed positive semi-definiteness of the estimated state covariances. The MLE
problem can be formulated as

ψ? ∈ arg max `(ψ; E1, ..., EM ) (9)

where `(ψ; E1, ..., EM ) denotes the log-likelihood concerning vectorψ and observationsE1, ..., EM ,
such that

`(ψ) =

M∑
m+1

log p(Em|E1, ..., Em−1;ψ), (10)
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where p(Em|E1, ..., Em−1;ψ) is obtained through the Kalman filter equations (for the derivation of
the Kalman filter equations, see Chapter 4.2 of Durbin and Koopman [2012]). Among the Kalman
filter outputs is the smoothed state α̃m = E[αm|E1, ..., EM ], which can be interpreted as the ex-
tracted components of the series, and the predictive state am = E[αm|E1, ..., Em−1], which is used
when computing goodness-of-fit statistics and diagnostics.

Algorithm 1 Monte Carlo simulation in a state-space framework
for ω ∈ Ω do

for k = 1 to K do
1. Sample random innovations from their distributions:

εM+k(ω) ∼ N(0, σ̂2ε),
ξM+k(ω) ∼ N(0, σ̂2ξ ), ζM+k(ω) ∼ N(0, σ̂2ζ ), χM+k(ω) ∼ N(0, σ̂2χ)

where σ̂2ε , σ̂
2
ξ , σ̂

2
ζ , σ̂

2
χ are the maximum likelihood estimates of the error variances.

2. Obtain the state using sampled state innovations:
αM+k(ω) = TαM+k−1(ω) +RηM+k(ω)

3. Obtain energy scenario from simulated state and sampled observation innovation:
EM+k(ω) = ZαM+k(ω) + εM+k(ω)

end for
end for
return

{
EM+k(ω)

}
, k = 1, ...,K, ω ∈ Ω

Non-linear optimization methods such as BFGS, L-BFGS and Nelder-Mead (Avriel [2003],
Liu and Nocedal [1989]) can be employed to solve this problem. It is important to note that this
problem is usually non-convex and thus global optimality might not be guaranteed. It is good prac-
tice to run several random seeds as starting points in order to reduce the risk of obtaining a local
maximum. An extensive discussion on parameter estimation for state-space models can be found
in Durbin and Koopman [2012].

After estimating the fixed parameters and running the Kalman filter, generation of future
scenarios can be done through Monte Carlo simulation. Given the energy consumption dataEM , the
smoothed state α̃M , and the estimated hyperparameters ψ̂ the simulation is conducted as described
in Algorithm 1.

5. Case study

This section presents results from a case study based on real data from distribution com-
pany Energisa. The study consists of a simulation of 1000 scenarios for the energy consumption in
the state of Minas Gerais (MG). We utilize historical consumption dating from January 2006 up to
December 2015 as our in-sample period, while the out-of-sample period is set as January 2016 to
September 2016. Figure 1 presents the time series of interest. It is visible that the series displays
a definite rising trend, which attenuates after 2014, possibly due to the recent Brazilian economic
crisis. Additionally, we employ climatic and economic indices as exogenous variables, namely
monthly temperature in the Minas Gerais state (specifically in the municipality of Manhuaçu),
Brazilian GDP, employment rates, salary of admission, and an industrial production proxy.

Estimation and simulation are done following the methods presented in Section 4 through
Julia package StateSpaceModels.jl. The extracted smoothed state components are displayed
in Figure 2. It shows a stochastic, rising trend with a noticeable dip towards the end, a deterministic,
positive slope, and a well-defined but stochastic seasonal component. The simulation results and
their comparison with the out-of-sample realization can be seen in Figure 3. The observed series is
between the 5% and 95% quantiles of the scenarios except for one observation. The out-of-sample

https://proceedings.science/p/85498?lang=pt-br

https://proceedings.science/p/85498?lang=pt-br


Figure 1: Energisa-MG monthly energy consumption. The dashed line separates the in-sample and out-of-
sample periods.

Figure 2: Smoothed state components extracted from Energisa-MG in-sample data.

goodness-of-fit statistics indicate an adequate model fitting, with a mean absolute error1 (MAE)
of 2359.72 MWh and consequent symmetric mean absolute percentage error2 (SMAPE) of 1.26%.
The in-sample predictive estimates show similar results, with a MAE of 2098 MWh and SMAPE
of 1.27%.

Finally, as a diagnostic procedure, we analyze the standardized predictive residuals, which
are given by

em =
vm√
Fm

, m = 1, ...,M, (11)

where vm = Em − Êm|m−1 and Ft are the one-step-ahead forecast error and its variance, respec-
tively. Êm|m−1 is the predictive observation given by the Kalman filter, such that

Êm|m−1 = E
[
Em
∣∣E1, ..., Em−1

]
. (12)

If the model is well-specified, then et follows a standard Normal distribution. Therefore,
we conduct a Jarque-Bera test (Jarque and Bera [1987]) in order to test the in-sample forecast errors
for normality. The resulting p-value of 0.026 goes against normality at the 95% significance level.
However, residuals have been affected by an outlier in June 2015, where the energy consump-
tion drastically dropped. By inserting a manual intervention, correcting that outlier residual and

1MAE = 1
M

∑M
i=1 |Êm − Em|

2SMAPE = 1
M

∑M
i=1

Êm−Em

(|Êm|+|Em|)/2
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computing once again the Jarque-Bera test, we obtain a p-value of 0.710, which strongly indicates
normality.

Figure 3: Out-of-sample simulation and comparison with the actual realization for Energisa-MG energy
consumption.

6. Conclusions
This paper proposes a methodology to simulate future long-term scenarios of energy con-

sumption based on a state-space framework, as opposed to the majority of the literature, which
consists of forecasting. The out-of-sample goodness-of-fit results and diagnostics indicate that the
model is well-specified. We also make an initial version of StateSpaceModels.jl, a power-
ful Julia package for modeling time series in state-space form, available on GitHub. Additionally,
we make the liaison between low- and high-frequency modeling in demand forecasting together
with the companion paper (Bodin et al. [2018]), which starts from the monthly energy consumption
scenarios and proceeds to the high-frequency framework.
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